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1. About ClusterProject 1.0 

ClusterProject is a program that provides a computational and graphical environment for 

analyzing data from DNA microarray experiments, or other corresponding cluster datasets. The 

program ClusterProject organizes and analyzes the data in various ways and allows the organized 

data to be visualized.  

This manual is intended as a reference for using the software, meanwhile as a comprehensive 

introduction to the methods employed. Many of the methods are drawn from standard statistical 

cluster analysis. There are excellent textbooks available on cluster analysis. 

 

 MDI (Multi-Document Interface) framework enables the user to work with more than one 

document at the same time. 

 The various clustering algorithms are available with custom-preferences. 
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 Project manages the all resources under four types: data, preference, graph and report with a 

tree browser. 

 The various graphical modes include data table, text report, 2D distributing, 3D distributing, 

grid matrix, tree, and centroid curve. These graphical modes can be saved as BMP or PDF 

documents.  

2. System Requirement 

 Hardware: PC 586 or higher; 64MB RAM or more; at least 10 MB free space on 

hard disk. 

 Operating System: Microsoft Window 95/98, Windows 2000 or Windows XP. 

 Recommended Operating System: Microsoft Window 2000/XP. 

3. Install and Update 

All related files for ClusterProject 1.0 are compressed into ClusterProject.exe. 
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 Installing ClusterProject 
1) Download the ClusterProject.exe file to a temporary directory.  

2) Click ClusterProject.exe to install this program.   

3) Follow the installation wizard to finish the installation. 

ClusterProject can be installed on your computer in the folder which you nominate during the 

installation process. The defaulted installation path is: C:\Program Files\ClusterProject\.   

 Uninstalling ClusterProject  
To remove ClusterProject, one way is to open the Windows Control Panel, double click 

Add/Remove Programs, select ClusterProject, and then click Add/Remove. Another way is to click 

"Uninstall ClusterProject" in Start/Programes Menu. 

 Update new version 
You can get the latest version from http://www.cab.zju.edu.cn/english/ics/faculty/zhujun.htm or 

send E-mail to Authors: hypan@scbit.org or jzhu@zju.edu.cn. 

4. Basic Operation 

4.1  Inserting Data 

 Click File/New menu or the first button  on the Toolbar. A dialog will be 
popped up. 

 

Currently, ClusterProject reads two types of text files in particular formats described below. It 

offers several the delimiters to separate the text, meanwhile, missing values are acceptable and 

are designated by several signs. The default postfix of original data files is *.sdt and other 
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postfixes such as *.txt can be acceptable. Such text files can be created and exported in any 

standard spreadsheet program, such as Microsoft Excel. 

Type 1: The first standard format of input file is described as follow.  In this standard format, 

rows represent genes and columns represent samples or treatments or time points in a biological 

process. For a simple time course, a minimal input file would look like this:  
YORF 0 minutes 30 minutes 1 hour 2 hours 4 hours 

YAL001C 1 1.3 2.4 5.8 2.4 
YAL002W 0.9 0.8 0.7 0.5 0.2 
YAL003W 0.8 1.4 4.2 10.1 10.1 
YAL005C 1.1 1.3 0.8  0.4 
YAL010C 1.2 1 1.1 4.5 8.3 

Each row (gene) has an identifier (in green) that always goes in the first column, and each 

column (sample) has a label (in blue) that is always in the first row. The remaining cells in the table 

contain data for the appropriate gene and sample. The “5.8” in row 2 and column 4 means that the 

observed data value for gene YAL001C at 2 hours is 5.8. 

It is possible to have additional information in the input file. A maximal ClusterProject input file 

would look like this:  
YORF NAME GINDEX 0 min 30 min 1 h 2 h 4 h 

EINDEX   1 1 1 1 1 
YAL001C TFIIIC 138 KD SUBUNIT 1 1.3 2.4 5.8 2.4 1 
YAL002W UNKNOWN 1 0.9 0.8 0.7 0.5 0.2 
YAL003W ELONGATION FACTOR EF1-BETA 1 0.8 2.1 4.2 10.1 10.1 
YAL005C CYTOSOLIC HSP70 1 1.1 1.3 0.8  0.4 
The yellow cells are optional. By default, ClusterProject uses the ID in column 1 as a label for 

each gene. The NAME column allows you to specify a label for each gene that is distinct from the 

ID in column 1. The GINDEX column allows user to define the class label of each gene and the 

EINDEX row allows user to define the class label of each sample. 
 

Type 2:  Another standard format of original file would look like this: 

[TYPE1.0] 

GeneID TimePoint Rep Trait 

YAL001C 0 min 1 -1.0 

YAL001C 30 min 1 2.0 

YAL001C 1 h 1 3.0 

YAL002W 0 min 1 -0.6 

YAL002W 30 min 1 0.12 

YAL002W 1 h 1 -0.36 

The red cell [TYPE1.0] is necessary and the input should be accordant to this flag. The column 



Manual for ClusterProject 1.0 

 −5− 

of Rep is indispensable whether the experiment has replication or not. If there is no replication, all 

values of this column are set to one. It can have additional factors in the input file such as dye, 

treatment or array et al. 

4.2  Cluster Methods 

 Click the button (Figure 1) on the Toolbar. In current, ClusterProject contains two 

common kind methods: hierarchical and partition clustering methods. 

 
                                    Figure 1 

Cluster analysis groups objects based on the information found in the data to describe their 

relationships. The goal of cluster analysis makes that the objects in a group will be similar (or 

related) to each other and different from (or unrelated to) the objects in other groups. There are 

abundant clustering methods available in many literatures.  

4.2.1 Hierarchical Clustering 

 Click Hierarchical Clustering attribute, you can perform hierarchical clustering 

methods on your data to obtain meaningful results. Meanwhile you can select 

Gene or Array or both to perform cluster analysis. ClusterProject currently 

implements ten types of agglomerative hierarchical and one divisive hierarchical 

clustering (Diana). It is notable that the generic term “array” refers to tissue types, 

treatments or time points in a biological process. The meaning of this term is 

same in other interfaces. 
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If you click Split Tree, you can split the hierarchical tree at a desirable height level and then 

obtain several similar groups. 

See also: Hierarchical Clustering 

4.2.2 Partition Clustering 

 Click Partition Clustering attribute, you can perform partition clustering methods 

on your data. Meanwhile you should input the cluster number advanced. 

ClusterProject currently performs five types of partition clustering: K-Means, 

K-Medoid, PAM, CAST and GACLUS (which is based on genetic algorithms, See also: 

Genetic Algorithm). 
 

 
If you click GACLUS, you can configure the attributes of GACLUS such as selection, crossover, 

mutation, and reinsertion etc. 

See also: Partition Clustering 

4.3  Distance Methods 

 Click Distance Metric attribute, you can select various distance metrics to 

combine with a particular clustering method.  
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All clustering algorithms use a dissimilarity or similarity measurement between samples or 

genes to compare patterns of expression. In current, this software contains fifteen distance metrics. 

Among these metrics, six metrics are correlation coefficients (cosine-angle correlation, Pearson 

correlation, Uncentered Pearson correlation, Squared Pearson correlation, Spearman rank-order 

correlation, and Kendall’s Tau correlation). 

4.4  Validation Methods 

 Click Validation attribute, you can select two evaluation metrics to combine with a 

particular clustering method.  
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In current, ClusterProject contains three types of external indices: Adjusted rank index, 

Jaccard index, and FM index and four types of internal indices: homogeneity and separation, 

VRC criterion, and silhouette width. 

See also: Evaluation Indices 

4.5  Output Files 

ClusterProject writes up to several output files for each clustering run. The root filename of each 

file is whatever text you name the project, and the project file will save configurations and source 

data filename. 

The output filename extension specifies the type of output file. It can be one of the following 

names: *.sdt，*.gdt, *.rpt. 

 *.sdt Document of original data, which are tab-delimited text file. In fact, it is the copy of 

the file which you insert into this project. 

See also: Data 

 *.gdt Document of graph results, it can be one of the following types: 2D/3D distribution 

(*_2D.gdt or *_3D.gdt), hierarchical tree (*_T.gdt), expression profile (*_C.gdt or *_M.gdt). If 

clustering for genes, the filename will add _G. For example, if it is 2D distribution for genes, 

the document is *_G_2D.gdt. If clustering for arrays, the filename will add _A. It is same for 

other graph results and text report. These files are automatically read in ClusterProject when 

you open the corresponding *.prj file. You can browse them by a graph viewer embedded in 

ClusterProject. 

See also: Graph 

 *.rpt Document of text report, it contains the configurations which you select and the 

cluster results of each run. 

4.6  Graphical Representation 

The raw data and cluster results obtained by various cluster analysis can be visualized by 

several types ways and assist the biologists to obtain meaningful conclusions. Click Graph menue 

of the left view, you can see several graph types. The main types of visualizations are described 

as follow:  
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Fig.1. After PCA, the first two PCs are 

extracted. The expression pattern can be 

represented by 2-dimensional graph. The 

x-axis represents PC1 and y-axis PC2. 

Fig.2. After PCA, the first two PCs are 

extracted. The expression pattern 

can be represented by 2-dimensional 

graph. The x-axis represents PC1, 

y-axis PC2 and z-axis PC3. 

 

The primary data is combined with a graphical representation by representing each data point 

with a color that quantitatively reflects the original experimental observation. Color scales range 

usually from saturated green (negative max absolute value) to saturated red (positive max)  

 

 

Fig.3. The dendrogram of cluster groups using 
Hierarchical Clustering methods. 

Fig.4. Expression patterns of all genes or 
samples and the mean profiles of 
groups. 
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4.7  Context Menu 

 Click the right of mouse on a graph, a particular menu will be popped up. 

The detailed context of this menu is as follow: 

 

Save          Save as Windows Bitmap file or PostScript file.  

You can export your graph results and share 

them with others. 

Print           Print graph results. 

Zoom          Show a pop-up dialog with a slider. You can  

move the slider to zoon in/out the graph. 

Zoom Best Fit Show the graph as the “best” size for the window. 

DataItem Show or hide the components in the graph. 

Palette Change the palette for profile graph. 

Text Show or hide the topic of the graph. 

Sample Show or hide the color sample of the graph. 

Multicolor Change the color setting: Multicolor or Monochrome 

  
Fig.5. The expression profile of raw gene 

expression data. 
Fig.6. The expression profile of clusters using 

Partition Clustering Methods. 
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4.8  Graph Viewer 

Click Tools/Graph viewer menu, you can take a quick view for your graph file without open a 

project by an embedded graph viewer. When you start this menu, a file-open dialog will popped up, 

and you can input a *.gdt file, Graph Viewer will show it. 

4.9  Data Browser 

Click Tools/Data Browser menu, you can take a quick view for the original data without open a 

project or insert it into a new project. When you click this menu, a file-open dialog will be popped 

up, and you can input an existing *.sdt file, Data Browser will show it in a grid table.  

4.10 Data Preprocessor 

 Click Tools/Preprocessor menu. You can filter and transform the data inputted.  

 

The Filter menu allows you to remove genes that do not have certain desired properties from 

your dataset, and the Transformation menu, you can perform a number of operations that alter 

the underlying data in the imported table. 

See also: Preprocessing 

4.11 Principle Component Analysis (PCA) 

 Click Tools/PCA menu allows you to perform the PCA process on your data. 
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It can extract the first p characteristic principal components which are mutually uncorrelated and 

orthogonal. Each variation of an object can be written exactly as a linear combination of these p 

characteristic principal components. The result is visualized by 2-dimensional or 3-dimesional 

graph. 

See also: PCA 

4.12 Mixed Model Approach 

 Click Tools/Mixed Model menu, you can implement the mixed model analysis on 

your data. It allows you to input the expression of the model used. 

 

Option allows you to estimate variance components and fixed effects, and predict random 
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effects. It offers different methods for estimating the variance components (MINQUE0, MINQUE1 

and REML) and predicting the random effects (LUP and AUP) and fixed effects (OLS and GLS). If 

selecting Jackknife checkbox, it can test for the significance of the estimated variance 

components and effects. 

The standard format of the original data looks like this: 

GeneID TimePoint Rep Trait 

YAL001C 0 min 1 -1.0 

YAL001C 30 min 1 2.0 

YAL001C 1 h 1 3.0 

YAL002W 0 min 1 -0.6 

YAL002W 30 min 1 0.12 

YAL002W 1 h 1 -0.36 

The column of Rep is indispensable whether the experiment has replication or not. If there is no 

replication, all values of this column are set to one. It can have additional factors in the input file 

such as dye, treatment or array et al. This is tab-delimited text file. 

Mixed model approaches are widely used to partition observed phenotypes into various sources 

of variation. They have the flexibility to handle a wide variety of experimental designs and data 

shapes including balanced and unbalanced data, and to be easily extended to more complicated 

biological models.The detailed descriptions of this method can be seen from the literatures (Miler, 

1974; Searle, 1992; Zhu, 1994; Zhu and Weir, 1996). 
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5. Knowledge Base 

5.1 Data Preprocessor 

5.1.1 Transformation 

5.1.1.1 Logarithmic transformation 

In the log transformation, the logarithm transformation function is applied to each expression 

level in the data. 
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5.1.1.2 Mean/Median centering 
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where ix is mean of the vector xi and med jx is median of the ascending sorted vector x’i. 

5.1.1.3 Standardization 

The expression vectors are standardized to have mean 0 and standard deviation 1(by 

subtracting the mean of each row in the data, and then dividing by the standard deviation of the 

row). 
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5.1.1.4 Length One 

The expression vectors are transformed to have mean 0 and length 1. 
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5.1.1.5 Population Center 

Here the population mean will be subtracted from each data element: 

ij ijy x x= −  

1 1

1
*
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i j

x x
n m = =
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where x is the total mean of the population. 

5.1.2 Filtering 

Due to the large number of genes, the full gene expression data set is usually filtered to reduce 

the size of the data. Filtering removes genes that do not vary significantly across the experiments 

and do not have certain desired properties from your dataset. Filtering also facilitates biological 

interpretation because genes that do not vary significantly across the experiments are usually not 

of great interest to the biologist. The currently properties that can be used to filter data are: 

 % Present >= X. This removes all genes that have missing values in greater than (100-X) 

percent of the columns. 

 SD (Gene Vector) >= X. This removes all genes that have standard deviation of observed 

values less than X. 

 At least X observations abs (Val) >= Y. This removes all genes that do not have at least X 

observations with absolute values greater than Y. 

 Max Val−MinVal >= X. This removes all genes whose maximum minus minimum values are 

less than X. 

5.2  Distance Metrics 

All clustering algorithms use a dissimilarity or similarity measurement between samples or genes 

to compare patterns of expression. Let xi = {xi1, xi2,… , xik,… , xin} and xj = {xj1, xj2,… , xjk,… , xjn} 

be two vectors of expression values for object i and object j. 

5.2.1 Euclidian distance 

Euclidian distance is a very commonly used distance measurement. It is basically just the sum of 

the squared distances of two vector values (xik, xjk). The Euclidian distance is given by the formula: 

2
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Euclidian distance will be variant to both adding and multiplying all components with a constant 

factor, it is necessary to normalization the dataset to remove the effect of scales before using 

Euclidian distance. It is also variant to the dimension of the vectors, for example if missing values 

reduces the dimension of certain vectors. 

5.2.2 Manhattan distance 

Manhattan distance is the sum of the absolute distances of two vector values (xik, xjk) on a 

compound basis. 

1
( , ) | |

n

ik jk
k

D i j x x
=

= −∑  

Basically this is a linear version of the Euclidian distance, with the same advantages and 

disadvantages. 

5.2.3 Chebyshev distance 

Chebyshev distance is the maximum of the absolute distances of two vector values (xik, xjk). 
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5.2.4 Canberra distance 
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5.2.5 Bray-Curtis distance 
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5.2.6 Clarl distance 
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5.2.7 Averaged Dot  

The simplest measurement of association between two vectors is the inner product. The inner 

product between two points is defined as the sum of products of components and can be modified 

by defining an adjusted or ‘average’ value; 
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1
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which is independent of the sample size n. 

5.2.8 Covariance 

 The covariance distance between two points is defined as follow: 
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Adding or subtracting constant numbers to the vectors does not alter the magnitude of the 

covariance, but multiplying by constants does. Covariance values are also independent of the 

sample size n, since the numerator is divided by n −1. 

5.2.9 Distance based on mixed-model 

The phenotype value of the jth feature for the ith object can be expressed by a mixed linear 

model, 

ijk i j ij ijky µ α τ ε= + + +  

where ijky is the observed value of feature j for object i in k replication; iµ  is the mean 

expression level of object i, fixed effect; 2~ (0, )j αα σ is the random effect of feature j; 
2~ (0, )ij ττ σ is the interaction between the i-th object and the j-th feature and the random error 

term 2~ (0, )ijk εε σ is the residual effect. 

For any pairs of objects, the similarity between object i and object j is defined as: 
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where 2

( , )i jd  is half of the squared difference of feature means between object i and object j, and 
2
( , )i jτσ is the object × feature interaction variance for object i and object j. The squared difference 

2
( , )i jd  is a parameter of marginal means difference and the interaction variation, 2

( , )i jτσ  is of the 

response ‘shape’. 2
( , )i jτσ can be obtained by the ANOVA method for balanced data. For the 

missing data, 2
( , )i jτσ can be estimated by restricted maximum likelihood estimation (REML) 

method (Searle et al., 1992) or Minimum Norm Quadratic Unbiased Estimation (MINUQE) method 

(Rao, 1970). 

The similarity between two objects is then estimated by 

2 2 2
( , ) .. .. ( , )

1ˆ ˆ( )
2i j i j i jD y y τσ= − +  
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5.2.10 CosineAngle Correlation 

In term of vector components, cosθ can be expressed as: 
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∑ ∑
 

When 0θ = both xi and xj lie on the same straight line and are thus linearly dependent. For 

90θ = , the vectors are orthogonal, and in general -1≤cosθ ≤1. 

5.2.11 Pearson Correlation 

Pearson correlation coefficient is a widely used measurement of association between two 

vectors. Pearson correlation r is given by the formula: 

1

2 2

1 1

( )( )
( , )

( ) ( )

n

ik i jk j
k

n n

ik i jk j
k k

x x x x
R i j

x x x x

=

= =

− −
=

− −

∑

∑ ∑

 

where ix is the mean of the vector xi and jx is the mean of the vector xj. The correlation coefficient 

is invariant under scalar transformation of the data (adding, subtracting or multiplying the vectors 

with a constant factor). 

5.2.12 Uncentered Pearson correlation 

This is basically the same formula as above, except the mean is expected to be 0. 
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Curves with “identical” shape, but different magnitude have an uncentered correlation coefficient 

< 1, whereas the Pearson correlation coefficient in this case would be 1. If just the magnitude of 

the curve is important, then the uncentered correlation value is better. 

5.2.13 Squared Pearson correlation distance 

The squared Pearson correlation coefficient calculates the square of the Pearson correlation 

coefficient, so that negative values become positive. 
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If the correlation approaches –1, the squared Pearson will approach 1, i.e. a perfect match. In 

this way, samples or genes with an opposite behavior will be seen as identical. This is especially 

good for identifying reciprocal expression profiles (e.g. regulatory or inhibitory mechanisms). 

5.2.14 Spearman Rank-Order correlation distance 

Spearman rank correlation is nonparametric or rank correlations. The key concept of 

nonparametric correlation is this: If we replace the value of each xik and xjk by the value of its rank 

among all the other xi ’s (xj ’s) in the object, that is, 1, 2,… , n, then the resulting list of numbers will 

be drawn from a perfectly known distribution function, namely uniformly from the integers between 

1 and n. 

Let Ri be the rank of xi among the other xi’s, Si be the rank of xj among the other xj’s, the sum 

squared difference of ranks is defined as:  
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When there are no ties in the data, then the exact relation between D and rs is 
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When there are ties, then the exact relation is slightly more complicated: Let fk be the number of 

ties in the kth group of ties among the Ri’s, and let gm be the number of ties in the mth group of ties 

among the Si’s. Then the exact relation between D and rs is 
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Notice that if all the fk and all the gm are equal to one, meaning that there are no ties, the 

equation (2) reduces to equation (1). 

5.2.15 Kendall’s Tau correlation distance 

Kendall’s Tau is even more nonparametric than Spearman’s Rank correlation. Instead of using 

the numerical difference of ranks, it uses only the relative ordering of ranks: higher in rank, lower in 

rank, or the same in rank. Considering all 1/2n(n-1) pairs of data points, a pair is called as 
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concordant if the relative ordering of the ranks of the two xi’s (or for that matter the two xi’s 

themselves) is the same as the relative ordering of the ranks of the two xj’s (or for that matter the 

two xj’s themselves), a pair is called as discordant if the relative ordering of the ranks of the two 

xi’s is opposite from the relative ordering of the ranks of the two xj’s. If there is a tie in either the 

ranks of the two xi’s or the ranks of the two xj’s, then the pair is not called as either concordant or 

discordant. If the tie is in the xi’s, the pair is defined as an “extra y pair.” If the tie is in the y’s, the 

pair is defined as an “extra x pair.” If the tie is in both the x’s and the y’s, we don’t call the pair 

anything at all. Kendall’sτ is now the following simple combination of these various counts: 

( , ) concordant discordanti j
concordant discordant extra y concordant discordant extra x

τ −
=

+ + − + + −
 

5.3  Clustering Algorithms 

Cluster analysis is a useful exploratory technique, which is essential in data mining process for 

exploring natural structure and identifying interesting distributions and patterns in underlying data. 

Cluster analysis groups objects based on the information found in the data describing the objects 

or their relationships. The objective of cluster analysis is to find groups in a given data set so that 

objects in the same group are more similar to each other and different from the objects in other 

groups.  

5.3.1 Hierarchical clustering 

Hierarchical clustering proceeds successively by either merging smaller clusters into larger ones, 

or by splitting larger clusters. The result of the algorithm is to produce a tree of clusters, ranging 

from clusters of individual points at the bottom to an all-inclusive cluster at the top. A diagram 

called a dendrogram which shows how the clusters are related and describes the order in which 

points are merged (bottom-up view) or clusters are split (top-down view). According to the 

methods producing the hierarchical tree, hierarchical clustering algorithms can be further divided 

into agglomerative algorithms and divisive algorithms. 

One of the attractions of hierarchical techniques is that they correspond to taxonomies that are 

very common in the biological sciences, e.g., kingdom, phylum, genus, species etc. Another 

attractive feature is that hierarchical techniques do not assume any particular number of clusters. 

Instead any desired number of clusters can be obtained by “cutting” the dendrogram at the proper 

level and then a clustering of the data items into disjoint groups is obtained. Finally, hierarchical 

techniques are thought to produce better quality clusters. 
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5.3.1.1 Agglomerative clustering 

Agglomerative clustering starts with the points as individual clusters and iteratively reduces the 

number of clusters by merging the two most similar objects or clusters, respectively, until only one 

cluster is remaining. This requires defining the notion of cluster proximity. 

The procedures of many hierarchical agglomerative clustering methods can be expressed by the 

following algorithms, which are known as the Lance-Williams algorithm. 

Basic Agglomerative hierarchical Clustering Algorithm 

(1) Calculate the distance between all objects and construct the similarity distance matrix. 

Each object represents its own cluster. 

(2) Find the two clusters with the minimum distance to each other and merge. 

(3) Update the distance matrix to reflect the distance between the new cluster and the original 

clusters. 

(4) Repeat step (2) and (3) until only a single cluster remains. 

The key step of the previous algorithm is the calculation of the distance between two clusters, 

and this is where the various agglomerative hierarchical techniques differ. Most of the cluster 

proximities that in the ClusterProject can be viewed as a choice of different parameters (in the 

Lance_Williams formula) for the distance between clusters k and r, where r is formed by merging 

cluster p and q. 

kr p kp q kq pq kp kqD D D D D Dα α β γ= + + + −   

Table 1 The parameters for four agglomerative clustering algorithms. 

Cluster Method pα  qα  β  γ  

Single Linkage 1/2 1/2 0 -1/2 

Complete Linkage 1/2 1/2 0 1/2 

WPGMA Linkage 1/2 1/2 0 0 

Average Linkage p rn n  q rn n  0 0 

 

2 2 2 2 2 2
kr p kp q kq pq kp kqD D D D D Dα α β γ= + + + −     
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Table 2 The parameters for five agglomerative clustering algorithms. 

 
Cluster Method pα  qα  β  γ  

Median Linkage 1/2 1/2 -1/4 0 

Centroid 
Linkage p rn n  q rn n  2

p q rn n n−  0 

Flexible Group 
Linkage 

(1 ) p rn nλ−  (1 ) q rn nλ−  <1 0 

Flexible Linkage (1 ) / 2λ−  (1 ) / 2λ−  <1 0 

Ward Linkage ( ) ( )p k r kn n n n+ + ( ) ( )p k r kn n n n+ + ( )k r kn n n− +  0 

The following are the detail of some of the most commonly used. 

Single linkage (nearest neighbor) 

In this method, the distance between two clusters is defined to be minimum of the distance 

between the two points in the different clusters (i.e., by the “nearest neighbors”). If there are 

several equal minimum distances between clusters during merging, single linkage is the only well 

defined procedure. Its greatest drawback is the tendency for chain building: Only one (random) 

small distance is enough to enforce the amalgamation of two otherwise very different clusters. 

Therefore, the resulting clusters tend to represent long "chains". Single linkage is good at handling 

non-elliptical shapes, but is sensitive to noise and outliers. 

Complete linkage (furthest neighbor) 

In this method, the distance between two clusters is determined by the maximum distance 

between any two points in the different clusters (i.e., by the "furthest neighbors"). Complete 

linkage usually performs quite well in cases when the objects actually form naturally distinct data 

clouds in the multidimensional space. If the clusters tend to be somehow elongated or to be a 

"chain" type nature, then this method is inappropriate. Since only one (random) large distance is 

enough to merge two clusters, clusters tend to be small. Complete linkage is less susceptible to 

noise and outliers, but can break large clusters, and has trouble with convex shapes. 

Unweighted pair-group average linkage 

In this method, the distance between two clusters is calculated as the average distance of the 

pair-wise distances between all pairs of points in the two different clusters. This method is very 

efficient when the objects form natural distinct "clumps," however, it performs equally well with 

elongated, "chain" type clusters. Since the distance between two clusters lies between the 
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minimum formation of single linkage and the maximum formation of complete linkage, this 

procedure empirically shows no tendencies to either extreme described above, and is therefore 

more stable to unknown data point distributions. Admittedly, if there are several equal distances, 

the sequence of the amalgamation is critical. Note that the abbreviation UPGMA is used as well to 

refer to this method as unweighted pair-group method using arithmetic averages. 

Weighted pair-group average linkage 

This method is identical to the unweighted pair-group average method, except that in the 

computations, the size of the respective clusters (i.e., the number of objects contained in them) is 

used as a weight. Thus, this method (rather than the previous method) should be used when the 

cluster sizes are suspected to be greatly uneven. 

Centroid linkage 

In this method, the proximity between two clusters is calculated as the distance between two 

centroids of two clusters. Centroid linkage has a characteristic—often considered bad that other 

hierarchical clustering techniques don’t posses: the possibility of inversions. In other words, two 

clusters that are merged may be more similar that the pair of clusters that were merged in a 

previous step. For other methods, the similarity of clusters merged decreases (the distance 

between merged clusters increases) as proceeding from singleton clusters to one inclusive 

cluster. 

Ward's method 

This method is distinct from all other methods because it uses an analysis of a variance 

approach to evaluate the distances between clusters. This method attempts to minimize the Sum 

of Squares of any two (hypothetical) clusters that can be formed at each step. In general, this 

method is regarded as very efficient and tends to create equally sized clusters of small size. 

Time and Space Complexity 

Hierarchical clustering techniques typically use a proximity matrix. This requires the 

computation and storage of m2 proximities, a factor that limits the size of data sets that can be 

processed. Once the distance matrix is available, the time required for hierarchical clustering is O 

(m2). 

Limitations and problems 

We summarize the problems with agglomerative hierarchical clustering: 

 No global objective function is being optimized. 

 An incorrect merging of clusters in an early stage often yields results, which are far away from 
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the real cluster structure. 

 Good local merging decisions may not result in good global results. 

 Agglomerative hierarchical clustering techniques have trouble with one of more of the 

following: Noise and outliers, non-convex shapes, and a tendency to break large clusters. 

5.3.1.2 Divisive clustering 

Divisive clustering starts with one, all-inclusive cluster and, at each step, a biggest cluster is split 

into two smaller clusters until each cluster contains only a single sample. In this case, one should 

decide which cluster to split and how to split the bigger one into two smaller ones at each step.  

In divisive procedures, fundamentally all subsets have to be analyzed so that divisive 

procedures have an algorithmic complexity in the magnitude of O (2n). Divisive procedures 

immediately start with interesting cluster arrangements and are much more robust. 

Here we introduce a robust divisive clustering algorithm—Diana. 

Basic Diana Clustering Algorithm 

1) First time the selected cluster C is the whole data. To divide the selected cluster C with 

cardinality n(C) into two subgroups, the algorithm first looks for its most disparate 

observation (i.e., which has the largest average dissimilarity to the other observations of the 

selected cluster). That is, for each member x1 C, one computes the ‘distance’ from the rest ∈

of C by  

1

1

1
1, 1

\{ }
( ( ) 1) ( , )x

y C x
D n C d x y−

∈

= − ∑  

and identifies most disparate observation x1
* which has largest D1,x1.   

2) This disparate observation initiates the “splinter group”. In subsequent steps, the algorithm 

reassigns observations that are closer to the “splinter group” than to the “old party”, the 

observations in the “splinter group” are noted as x1
*, . . . , xk+1

*. This procedure continues 

iteratively till Dk+1, x k+1
* < 0 where  

1
* *

1

1
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…  

and xk+1
*
 maximizes Dk+1, x k+1. The result is a division of the selected cluster C into two new 

clusters {x1
*,… , xk+1

*
 } and C\{ x1

*,… , xk+1
*}. 

3) The cluster with the largest diameter is selected. The diameter of a cluster is the largest 

dissimilarity between any two of its observations. The diameter is defined as: 

,
( ) max{ ( , )}

x y S
Diameter s d x y

∈
=  
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4) Continue Step 1, 2 and 3 until each cluster contains only a single observation. 

5.3.2 Partition clustering 

Partition clustering attempts to directly decompose the data set into a set of disjoint clusters. 

More specifically, they attempt to determine an integer number of partitions that optimize a certain 

objective function. The objective function may emphasize the local or global of the data and its 

optimization is an iterative procedure. 

5.3.2.1 K-Means 

The K-Means is a very simple clustering method because it is based on a very simple principle 

and provides good results. 

Basic K-Means Algorithm for finding K clusters 

1) Select k points as the initial centroids. 

2) Assign all points to the closest centroid. 

3) Re-compute the centroid of each cluster. 

4) Repeat step 2 and 3 until the centroids don’t change. 

The k-means algorithm has the following important properties: 

1) It is efficient in processing large data sets, due to the fact that the computational complexity of 

the algorithm is O (tkmn), where n is the number of points, m is the dimension of the points x, 

k is the number of clusters and t is the number of iterations over the whole data set. Usually, k, 

m, t << n. It takes usually just a few seconds to calculate even datasets with 10000 elements 

and more, making it a valuable tool for the investigation of datasets that are too big for 

hierarchical clustering for instance. 

2) Another big advantage is the moderate memory requirement for k-means clustering. Since 

there is no similarity matrix to calculate the memory requirements rise with O (n). 

The k-means algorithm has the following limitations and problems: 

1) It is difficult to discover correct clusters with non-convex shapes and wide different sizes 

2) It often terminates at a local optimum. The K-Means objective function is minimized by 

globular clusters of equal size or by clusters that are well separated. 

3) The k-Means algorithm is also normally restricted to data in Euclidean spaces because in 

many cases the required means and medians do not make sense. 

4) The major drawback of the k-means algorithm is that the number of clusters has to be 

specified in advance and seriously affected by the choice of the initial centroids. 
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5.3.2.2 K-Medoid 

In this project, K-Medoid is implemented a slight variation on K-Means clustering in which the 

median instead of the centroid of items are used. Obviously, K-Medoid has similar properties and 

problems. It computes more expensively than K-Means. 

5.3.2.3 PAM (Partitioning Around Medoids) 

The objective of PAM clustering is to find a non-overlapping set of clusters such that each 

cluster has a most representative point, i.e., appoint that is most centrally located with respect to 

some measure. These representative points are called medoids. 

Basic PAM Algorithm for finding K clusters 

(1) Select K initial points. These points are the candidate medoids and are intended to be the 

most central points of their clusters. 

(2) Consider the effect of replacing one of the selected objects (medoids) with one of the 

non-selected objects. The distance of each-selected point from the closest candidate medoid 

is calculated, and this distance is summed over all points. This distance represents the “cost’ 

of the current configuration. All possible swaps of a non-selected point for a selected one are 

considered, and the cost of each configuration is calculated. 

(3) Select the configuration with the lowest cost. If this is a new configuration, then repeat step 2. 

(4) Otherwise, associate each non-selected point with its closest selected point (medoid) and 

stop. 

The PAM approach is not restricted to Euclidean spaces and is likely to be more tolerant of 

outliers. However, finding a better medoid requires trying all points that are currently not medoids 

and is computationally expensive. 

5.3.2.4 CAST 

CAST uses as input the similarity matrix S. The affinity of an element v to a putative cluster C is 

( ) ( , )
i C

a v S i v
∈

=∑ . 

 The algorithm uses a single parameter t, clusters are generated one by one, the next cluster is 

started with a single element, and elements are added or removed from the cluster if their relative 

affinity is larger or lower than t, respectively, until the process stabilizes. 

Basic CAST Algorithm for finding K clusters 

While there are unclustered elements do: 

Repeat ADD and REMOVE until no changes occur: 
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ADD: add an unclustered element v with maximum affinity to C if a(v) > t|C|. 

REMOVE: remove an element u form C with minimum affinity if a(u) <= t|C|. 

Add C to the list of final clusters. 

5.3.3 Genetic clustering 

The traditional clustering methods, such as agglomerative or divisive hierarchical and partition 

clustering, use a greedy algorithm, it looks observations into a particular cluster that is deemed 

best at that point in the algorithm but may not be the best globally when all information is 

considered. Recently, the use of global optimization techniques such as Simulated Annealing and 

Genetic Algorithms (GAs) has emerged in the clustering fields (Cowgill et al., 1999; Maulik and 

Bandyopadhyay, 2000). 

Genetic Algorithms (GAs) introduced by Holland (1962) are randomized search and 

optimization techniques that guided by the principle of evolution and natural genetics. Because 

they are aided by large amounts of implicit parallelism (Grefenstettee and Baker, 1989), GAs are 

capable of searching for optimal or near-optimal solutions on complex, large spaces of possible 

solutions. Furthermore, GAs allows searching of these spaces of solutions by simultaneously 

considering multiple interacting attributes. Because of these advantages, GAs may represent 

another useful tool in the classification of biological phenotypes based on gene expression data. 

5.3.3.1 HGACLUS 

The detailed description is described by Pan et al. (2003). 

5.3.3.2 KGACLUS 

The detailed description is described by Maulik and Bandyopadhyay (2000). 

5.3.3.3 COWCLUS 

The detailed description is described by Cowgill et al. (1999). 

5.3.4 Cluster Validation 

Cluster validation refers to procedures that evaluate the results of cluster analysis in a 

quantitative and objective fashion. In the statistics literature, cluster validation procedures are 

divided cluster into two main categories: external and internal criterion analysis. 

External criterion analysis validates a clustering result by comparing it to a given “gold standard” 

which is another partition of the objects. The gold standard must be obtained by an independent 

process based on information other than the given data set. There are many statistical measures 

that assess the agreement between an external criterion and a clustering result. For example, 

(Milligan et al., 1983) and (Milligan and Cooper, 1986) evaluated the performance of different 
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clustering algorithms and different statistical measures of agreement on both synthetic and real 

data. 

Internal criterion analysis uses information from within the given data set to represent the 

goodness of fit between the input data set and the clustering results. For example, compactness 

and isolation of clusters are possible measures of goodness of fit. 

For validation of clustering results, external criterion analysis has the strong benefit of providing 

an independent, hopefully unbiased assessment of cluster quality. On the other hand, external 

criterion analysis has the strong disadvantage that an external gold standard is rarely available. 

Internal criterion analysis avoids the need for such a standard, but has the alternative problem that 

clusters are validated using the same information from which clusters are derived. Different 

clustering algorithms optimize different objective functions or criteria. Assessing the goodness of 

fit between the input data set and the resulting clusters is equivalent to evaluating the clusters 

under a different objective function. 

5.3.4.1 Internal Indices 

Variance Ratio Criteria 

Variance ratio criteria is defined as the following formula: 

)/()(    trace
)1/()( trace
kn

kVRC
−
−

=
W
B  

where n and k are the total number of points and the number of clusters in the partition, 

respectively. B and W are the covariance matrices of between and the within k-clusters sums of 

squares. VRC has intuitive appeal to express what constitutes ‘true’ clusters structures. VRC 

measures the degree of separation between clusters and homogeneity within clusters. Hence, a 

better clustering algorithm is expected to have a relatively larger VRC value. 

Figure of Merit 

FOM is defined as the root mean squared deviation in the left-out experimental condition of the 

individual gene expression levels relation to their cluster means. Assume that a clustering 

algorithm is applied to the data from experimental conditions 1, 2,… , (j-1), (j+1),… , n and 

condition j is used to estimate the predictive power of the algorithm. Let there be K clusters, C1, 

C2,… , Ck. Let x(g, j) be the expression level of gene g under condition j in the raw data matrix. Let 

Uci(j) be the average expression level in condition j of genes in cluster Ci. The FOM under the 

condition j is defined as: 

∑∑
= ∈

−=
k

i Cg
C

i

i
jUjgx

N
kjFOM

1

2)](),([1),(  



Manual for ClusterProject 1.0 

 −29− 

where N is the total number of genes. FOM (j, k) measures the means squared error of 

predicting the expression levels from the average cluster expression level in experiment j. Hence, 

a relatively small figure of merit indicates a clustering algorithm having relatively high predictive 

power 

Each of the n experiments can be used as the validation experiment. The aggregate figure of 

merit of all conditions is defined as: 

∑
=

=
n

j

kjFOMkFOM
1

),()(  

FOM (k) is an estimate of the total predictive power of the algorithms over all the experiments for K 

clusters in a data set and FOM (k) decreases as the number of clusters increases. 

Homogeneity and Separation 

Homogeneity is calculated as the average distance between each object and the center of the 

cluster it belongs to. The formula can be described as following: 

1 1

1 ( , )
ink

avg j k
i j

H D x z
n = =

= ∑∑  

where xj is the jth object and zk is the center of the cluster that xj belongs to; n is the total number 

of objects; D is the distance function. 

Separation is calculated as the weighted average distance between cluster centers: 

1 ( , )
i jC Ci j

i j

avg C C i jN N
i j

S N N D C C
≠ ≠

= ∑ ∑  

where Ci and Cj are the centers of ith and jth clusters, and Nci and Ncj are the number of objects in 

the ith and jth clusters. Thus Havg reflects the compactness of the clusters while Savg reflects the 

overall distance between clusters. Decreasing Havg or increasing Savg suggests an improvement in 

the clustering results. 

Silhouette Width 

Silhouette width is a composite index reflecting the compactness and separation of the clusters, 

and can be applied to different distance metrics. For each object i, its silhouette width s(i) is 

defined as: 

( )
( ) ( )( )

max ( ), ( )
a i b is i

a i b i
−

=  

where a(i) is the average distance of object i to other objects in the same cluster, b(i) is the 

average distance of object i to objects in its nearest neighbor cluster. The average of s(i) across all 
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objects reflects the overall quality of the clustering result. A larger averaged silhouette width 

indicates a better overall quality of the clustering result. 

5.3.4.2 External indices 

An external index is defined as a measure of agreement between a clustering result and a given 

“gold” standard. Since the true cluster labels are available for all of the real data sets we used, we 

are able to evaluate the ability of a clustering procedure to recover true cluster labels using the 

external criteria. 

Consider two partitions of n objects x1,… , xn : the R-class partition U={ u1,… , un}and the 

C-class partition V={v1,… , vn}. Externals indices of partition agreement can be expressed in the 

terms of a contingency table, with entry ni denoting the number of objects that are both in clusters 

ui and vj , i=1,… , R, j=1,… , C. 
 

Table 3  Contingency table for two partitions of n objects 
 v1 v2 … vC  

u1 n11 n12 … n1C n1. 
u2 n21 n22 … n2C n2. 
┆ ┆ ┆  ┆ ┆ 
uR nR1 nR2 … nRC nR. 

 n.1 n.2 … n.C n..=n 

Where . 1

C
i ijj

n n
=

=∑  and . 1

R
j iji

n n
=

=∑ denote the row and column sums of the contingency 

table, respectively and let 2
1 1

R C
iji j

Z n
= =

=∑ ∑ . 

The following indices can then be used.  

1) Adjusted Rand index: Hubert and Arabie (1985) 
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2) Jaccard: Jain and Dubes (1988) 

( ) 2 2
. .

1 1

/
R C

i j
i j

Jaccard Z n n n Z n
= =

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
∑ ∑  

3) FM: Fowlkes and Mallows (1983) 
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5.4  Principle Component Analysis (PCA) 

Principal Component Analysis (PCA), also known as Singular Value Decomposition (SVD) is an 

exploratory multivariate statistical technique that allows the identification of key variables (or 

combinations of variables) in a multidimensional data set that best explains the differences 

between observations. Given m observations (experiments) on n variables (genes), the goal of 

PCA is to reduce the dimensionality of the data matrix by finding r≤n new variables. These r 

principal components account together for as much of the variance in the original n variables as 

possible while remaining mutually uncorrelated and orthogonal. The goal is to reduce 

dimensionality while filtering noise in the process, making the data more accessible for 

visualization and analysis. 

5.4.1 Mathematical background 

Consider m observations on n random variables represented by the matrix X. D is a distance 

matrix of the input matrix X. Let P denote a (m×m) matrix of unknown coefficients such that the 

quadratic form PTDP is maximized subject to the constraint PTP = I. This is equivalent to 

maximizing the Lagrangean expression: 

T TΦ = P D P -λ I(P P -I)  

where λI is a diagonal matrix of Lagrange multipliers (Eigenvalues). Differentiating with respect to 

P and setting the equation to zero we are receiving 

2D-2λP 0
P

∂Φ
= =

∂   (1) 

The normal equations in (1) yield estimates for Eigenvalues and Eigenvectors. To compute the 

principal components, the m Eigenvalues and their corresponding Eigenvectors are calculated 

from the (m×m) distance matrix D using for example Singular Value Decomposition (SVD). When 

D is nonsingular, all latent roots are strictly positive and each Eigenvector defines a principal 

component. 

SVD methods are based on the following theorem of linear algebra: any (n×m) matrix X whose 

number of rows n is greater than or equal to its number of columns m, can be written as the 

product of a (n×m) column-orthogonal matrix U, a (m×m) diagonal matrix W with positive or zero 

elements (the singular values), and the transpose of an (m×m) orthogonal matrix V. 

TX = U W V  

SVD now explicitly constructs orthonormal bases for the null space and range of a matrix. 

Specifically, the columns of U whose same-numbered elements wj are nonzero are an 
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orthonormal set of basis vectors that span the range; the columns of V whose same-numbered 

elements wj are zero are an orthonormal basis for the null space. 

The matrices U and V are each orthogonal in the sense that their columns are orthonormal. 

UTU = VTV = VVT = I 

The vectors of U contain our Eigenvectors and the diagonal elements of W contain the 

corresponding Eigenvalues. Now the Eigenvectors of U are ordered regarding the value of their 

corresponding Eigenvalues. Each Eigenvector defines a principal component. Principal 

Component 1 (PC1) is the Eigenvector with the greatest Eigenvalue; PC2 is the Eigenvector with 

the second largest Eigenvalue and so on.  

Since U is an orthonormal matrix, it can be seen as a Transformation matrix, which transforms a 

vector from the input space into the space spanned by the Principal Components. 

Y = XU    (2) 

Each component can be viewed as a weighted sum of conditions, where the coefficients of the 
Eigenvectors are the weights. The projection of object i along the axis defined by the jth principal 
component is: 

1

m

ij i t t j
t

y x u
=

= ∑  

Where utj is the tth coefficient for the jth principal component; xit is the value for object i under the 

tth feature. Y represents the data in terms of principal components and is a rotation of the data 

from the original space of observations to a new space with principal component axes (PC Space). 

The variance accounted for by each of the components is its associated Eigenvalue; it is the 

variance of a component over all genes. Consequently, the Eigenvectors with large Eigenvalues 

are the ones that contain most of the information; Eigenvectors with small Eigenvalues are 

uninformative. 

5.4.2 Visualization 

Each variation of a object can be written exactly as a linear combination of these p characteristic 

principal components. If we apply the first three principal components, then we can now use a 

3-dimensional coordinate system, where the x-axis represents the PC1, the y-axis PC2 and the 

z-axis PC3. Plotted in this space is the rotated point yij. The position of yij in Principal Component 

Space gives us information of with patterns the specific objects consists. That in turn means that 

points near to each other in the Principal Component Space are composed of the same basic 

patterns and are therefore similar in profile. 
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5.5  Genetic Algorithm 

Genetic algorithms are general-purpose search algorithms based upon the principles of 

evolution observed in nature. Genetic algorithms combine selection, crossover, and mutation 

operators with the goal of finding the best solution to a problem. Genetic algorithms search for this 

optimal solution until a specified termination criterion is met. 

Genetic algorithms operate on a population of potential solutions applying the principle of 

survival of the fittest to produce better and better approximations to a solution. At each generation, 

a new set of approximations is created by the process of selecting individuals according to their 

level of fitness in the problem domain and breeding them together using operators borrowed from 

natural genetics. This process leads to the evolution of populations of individuals that are better 

suited to their environment than the individuals that they were created from, just as in natural 

adaptation.  

Figure 1 The structure of a simple genetic algorithm 

 

.Evolutionary algorithms work on populations of individuals instead of single solution. In this way 

the search is performed in a parallel manner. 

5.5.1 Selection 

Selection is a genetic operator that chooses a chromosome from the current generation’s 

population for inclusion in the next generation’s population. Before making it into the next 

generation’s population, selected chromosomes may undergo crossover and / or mutation 

(depending upon the probability of crossover and mutation) in which case the offspring 

chromosome(s) are actually the ones that make it into the next generation’s population. 
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5.5.1.1 Rank-based fitness selection  

In rank-based fitness assignment, the population is sorted according to the objective values. 

The fitness assigned to each individual depends only on its position in the individuals rank and not 

on the actual objective value. Rank-based fitness assignment overcomes the scaling problems of 

the proportional fitness assignment. The reproductive range is limited, so that no individuals 

generate an excessive number of offspring. Ranking introduces a uniform scaling across the 

population and provides a simple and effective way of controlling selective pressure. 

5.5.1.2 Roulette wheel selection  

The simplest selection scheme is roulette-wheel selection, also called stochastic sampling with 

replacement. The individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness. A random number is generated and the 

individual whose segment spans the random number is selected. The process is repeated until the 

desired number of individuals is obtained (called mating population). This technique is analogous 

to a roulette wheel with each slice proportional in size to the fitness, see figure 2. 

Table 1 shows the selection probability for 11 individuals. Individual 1 is the most fit individual 

and occupies the largest interval, Individual 11, the least fit interval, has a fitness value of 0 and 

get no chance for reproduction. 

Table 1 Selection probability and fitness value  

Number of individual 1  2 3 4 5 6 7 8 9  10  11 

fitness value 2.0  1.8 1.6 1.4 1.2 1.0 0.8 0.6  0.4  0.2  0.0 

selection probability 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 

For selecting the mating population the appropriate number of uniformly distributed random 

numbers (uniform distributed between 0.0 and 1.0) is independently generated.  

Sample of 6 random numbers:  

0.81, 0.32, 0.96, 0.01, 0.65, 0.42 

Figure 2 shows the selection process of the individuals for the example in table 1 together with 

the above sample trials. 

Figure 2 Roulette-wheel selection  
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After selection the mating population consists of the individuals: 1, 2, 3, 5, 6, 9 

The roulette-wheel selection algorithm provides a zero bias but does not guarantee minimum 

spread. 

5.5.1.3 Stochastic universal sampling  

Stochastic universal sampling provides zero bias and minimum spread. The individuals are 

mapped to contiguous segments of a line, such that each individual's segment is equal in size to 

its fitness exactly as in roulette-wheel selection. Here equally spaced pointers are placed over the 

line as many as there are individuals to be selected. Consider NPointer the number of individuals 

to be selected, then the distance between the pointers are 1/NPointer and the position of the first 

pointer is given by a randomly generated number in the range [0, 1/NPointer].  

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167. 

Figure 3 Stochastic universal sampling  

After selection the mating population consists of the individuals: 1, 2, 3, 4, 6, 8. 

Stochastic universal sampling ensures a selection of offspring which is closer to what is 

deserved then roulette wheel selection. 

5.5.1.4 Truncation selection  

Compared to the previous selection methods modeling natural selection truncation selection is 

an artificial selection method. It is used by breeders for large populations/mass selection.  

In truncation selection individuals are sorted according to their fitness. Only the best individuals 

are selected for parents. These selected parents produce uniform at random offspring. The 

parameter for truncation selection is the truncation threshold Trunc. Trunc indicates the proportion 

of the population to be selected as parents and takes values ranging from 50%-10%. Individuals 

below the truncation threshold do not produce offspring.  

5.5.1.5 Tournament selection  

In tournament selection a number Tour of individuals is chosen randomly from the population 

and the best individual from this group is selected as parent. This process is repeated as often as 

individuals to choose. These selected parents produce uniform at random offspring. The 

parameter for tournament selection is the tournament size Tour. Tour takes values ranging from 2 - 
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Nind (number of individuals in population). 

5.5.2 Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a 

new chromosome (offspring). The idea behind crossover is that the new chromosome may be 

better than both of the parents if it takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable crossover probability. 

5.5.2.1 Real valued recombination 

Discrete recombination 

Discrete recombination performs an exchange of variable values between the individuals. 

Consider the following two individuals with 3 variables each (3 dimensions), which will also be 

used to illustrate the other types of recombination:  

Individual 1      12     25      5 

Individual 2     123      4     34 

For each variable the parent who contributes its variable to the offspring is chosen randomly 

with equal probability.  

Sample 1           2      2      1 

Sample 2           1      2      1 

After recombination the new individuals are created:  

Offspring 1      123      4      5 

Offspring 2       12      4      5 

Discrete recombination generates corners of the hypercube defined by the parents. Discrete 

recombination can be used with any kind of variables (binary, real or symbols).  

Intermediate recombination 

Intermediate recombination is a method only applicable to real variables (and not binary 

variables). Here the variable values of the offspring are chosen somewhere around and between 

the variable values of the parents.  

Offspring are produced according to the rule:  

Offspring = parent 1 + Alpha (parent 2 - parent 1) 

where Alpha is a scaling factor chosen uniformly at random over an interval [-d, 1 + d]. In 

intermediate recombination d = 0, for extended intermediate recombination d > 0. A good choice is 

d = 0.25. Each variable in the offspring is the result of combining the variables according to the 

above expression with a new Alpha chosen for each variable. 

Consider the following two individuals with 3 variables each:  
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Individual 1      12     25      5 

Individual 2     123      4     34 

The chosen Alphas for this example are:  

Sample 1         0.5    1.1   -0.1 

Sample 2         0.1    0.8    0.5  

The new individuals are calculated as:  

Offspring 1     67.5    1.9    2.1 

Offspring 2     23.1    8.2   19.5 

Intermediate recombination is capable of producing any point within a hypercube slightly larger 

than that defined by the parents. 

Line recombination  

Line recombination is similar to intermediate recombination, except that only one value of Alpha 

for all variables is used:  

 Individual 1      12     25      5 

  Individual 2      123      4     34 

The chosen Alphas for this example are:  

Sample 1         0.5 

Sample 2         0.1 

The new individuals are calculated as:  

Offspring 1     67.5   14.5   19.5 

Offspring 2     23.1   22.9    7.9  

Line recombination can generate any point on the line defined by the parents. 

5.5.2.2 Binary valued recombination (crossover) 

Single-point crossover  

In single-point crossover one crossover position k [1,2,...,Nvar-1], Nvar: number of variables of 

an individual, is selected uniformly at random and the variables exchanged between the 

individuals about this point, then two new offspring are produced. Figure 6 may illustrate this 

process.  

Consider the following two individuals with 11 binary variables each:  

Individual 1     0  1  1  1  0  0  1  1  0  1  0 

Individual 2     1  0  1  0  1  1  0  0  1  0  1 

The chosen crossover position is:  

Crossover position:    5  

After crossover the new individuals are created:  
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offspring 1      0  1  1  1  0| 1  0  0  1  0  1 

offspring 2      1  0  1  0  1| 0  1  1  0  1  0 

Figure 4 Single-point crossover 

 

Multi-point crossover  

For multi-point crossover, m crossover positions ki [1,2,...,Nvar-1], i=1:m, Nvar: number of 

variables of an individual, are chosen at random with no duplicates and sorted in ascending order. 

Then, the variables between successive crossover points are exchanged between the two parents 

to produce two new offspring. The section between the first variable and the first crossover point is 

not exchanged between individuals. Figure 7 may illustrate this process. 

Consider the following two individuals with 11 binary variables each: 

Individual 1     0  1  1  1  0  0  1  1  0  1  0 

Individual 2     1  0  1  0  1  1  0  0  1  0  1 

The chosen crossover positions are:  

Cross pos. (m=3)     2           6          10 

After crossover the new individuals are created:  

Offspring 1      0  1| 1  0  1  1| 0  1  1  1| 1 

Offspring 2      1  0| 1  1  0  0| 0  0  1  0| 0 

Figure 5 Multi-point crossover 

 

The idea behind multi-point, and indeed many of the variations on the crossover operator, is that 

parts of the chromosome representation that contribute to the most to the performance of a 

particular individual may not necessarily be contained in adjacent substrings. Further, the 
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disruptive nature of multi-point crossover appears to encourage the exploration of the search 

space, rather than favoring the convergence to highly fit individuals early in the search, thus 

making the search more robust. 

Uniform crossover 

Single and multi-point crossover defines cross points as places between loci where a individual 

can be split. Uniform crossover generalizes this scheme to make every locus a potential crossover 

point. A crossover mask, the same length as the individual structure is created at random and the 

parity of the bits in the mask indicates which parent will supply the offspring with which bits.  

Consider the following two individuals with 11 binary variables each: 

Individual 1     0  1  1  1  0  0  1  1  0  1  0 

Individual 2     1  0  1  0  1  1  0  0  1  0  1 

For each variable the parent who contributes its variable to the offspring is chosen randomly 

with equal probability. Here, the offspring 1 is produced by taking the bit from parent 1 if the 

corresponding mask bit is 1 or the bit from parent 2 if the corresponding mask bit is 0. Offspring 2 

is created using the inverse of the mask, usually.  

Sample 1       0  1  1  0  0  0  1  1  0  1  0 

Sample 2       1  0  0  1  1  1  0  0  1  0  1 

After crossover the new individuals are created:  

Offspring 1      1  1  1  0  1  1  1  1  1  1  1 

Offspring 2      0  0  1  1  0  0  0  0  0  0  0 

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated 

with the length of the binary representation used and the particular coding for a given parameter 

set. This helps to overcome the bias in single-point crossover towards short substrings without 

requiring precise understanding of the significance of the individual bits in the individual 

representation. The algorithm of uniform crossover is identical to discrete recombination. 

8.2.2.4 Shuffle crossover  

Shuffle crossover is related to uniform crossover. A single crossover position (as in single-point 

crossover) is selected. But before the variables are exchanged, they are randomly shuffled in both 

parents. After recombination, the variables in the offspring are unshuffled. This removes positional 

bias as the variables are randomly reassigned each time crossover is performed. 

The binary valued crossover methods are all applicable to the real variables. 

5.5.3 Mutation 

Mutation is a genetic operator that alters one ore more gene values in a chromosome from its 

initial state. This can result in entirely new gene values being added to the gene pool. With these 
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new gene values, the genetic algorithm may be able to arrive at better solution than was 

previously possible. Mutation is an important part of the genetic search as help helps to prevent 

the population from stagnating at any local optima. Mutation occurs during evolution according to a 

user-definable mutation probability. This probability should usually be set fairly low (0.01 is a good 

first choice). If it is set to high, the search will turn into a primitive random search  

5.5.3.1 Flip bit mutation 

A mutation operator simply inverts the value of the chosen gene (0 goes to 1 and 1 goes to 0). 

This mutation operator can only be used for binary. 

5.5.3.2 Boundary mutation 

A mutation operator replaces the value of the chosen gene with either the upper or lower bound 

for that gene (chosen randomly). This mutation operator can only be used for integer and float 

genes. 

5.5.3.3 Uniform mutation 

A mutation operator replaces the value of the chosen gene with a uniform random value 

selected between the user-specified upper and lower bounds for that gene. This mutation operator 

can only be used for integer and float genes. 

5.5.3.4 Gaussian mutation 

A mutation operator replaces the value of the chosen gene with a uniform random value 

selected between the user-specified upper and lower bounds for that gene. This mutation operator 

can only be used for integer and float genes. 

5.5.4 Reinsertion 

Once the offspring have been produced by selection, recombination and mutation of individuals 

from the old population, the fitness of the offspring may be determined. If less offspring are 

produced than the size of the original population then to maintain the size of the original population, 

the offspring have to be reinserted into the old population. Similarly, if not all offspring are to be 

used at each generation or if more offspring are generated than the size of the old population then 

a reinsertion scheme must be used to determine which individuals are to exist in the new 

population. 

Different schemes of global reinsertion exist: 

 Produce as many offspring as parents and replace all parents by the offspring (pure 

reinsertion).  

 Produce less offspring than parents and replace parents uniformly at random (uniform 
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reinsertion).  

 Produce less offspring than parents and replace the worst parents (elitist reinsertion).  

 Produce more offspring than needed for reinsertion and reinsert only the best offspring 

(fitness-based reinsertion).  

Pure Reinsertion is the simplest reinsertion scheme. Every individual lives one generation only. 

This scheme is used in the simple genetic algorithm. However, it is very likely, that very good 

individuals are replaced without producing better offspring and thus, good information is lost. 

The elitist combined with fitness-based reinsertion prevents this losing of information and is the 

recommended method. At each generation, a given number of the least fit parents is replaced by 

the same number of the most fit offspring (see figure 6). The fitness-based reinsertion scheme 

implements a truncation selection between offspring before inserting them into the population (i.e. 

before they can participate in the reproduction process). On the other hand the best individuals 

can live many generations. However, every generation some new individuals are inserted. It is not 

checked whether the parents are replaced by better or worse offspring. 

Figure 6 Scheme for elitist insertion  

 
Because parents may be replaced by offspring with a lower fitness, the average fitness of the 

population can decrease. However, if the inserted offspring are extremely bad, they will be 

replaced with new offspring in the next generation. 

5.5.5 Termination 

Termination is the criterion by which the genetic algorithm decides whether to continue 

searching or stop the search. Each of the enabled termination criterion is checked after each 

generation to see if it is time to stop. 

The following types of termination should be considered: 

 Generation Number: A termination method that stops the evolution when the 

user-specified maximum number of evolutions has been run. This termination method is 

always active. 

 Evolution Time: A termination method that stops the evolution when the elapsed evolution 
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time exceeds the user-specified max evolution time. By default, the evolution is not stopped 

until the evolution of the current generation has completed, but this behavior can be 

changed so that the evolution can be stopped within a generation. 

 Fitness Threshold: A termination method that stops the evolution when the best fitness in 

the current population becomes less than the user-specified fitness threshold and the 

objective is set to minimize the fitness. This termination method also stops the evolution 

when the best fitness in the current population becomes greater than the user-specified 

fitness threshold when the objective is to maximize the fitness. 

 Fitness Convergence: A termination method that stops the evolution when the fitness is 

deemed as converged. Two filters of different lengths are used to smooth the best fitness 

across the generations. When the smoothed best fitness from the long filter is less than a 

user-specified percentage away from the smoothed best fitness from the short filter, the 

fitness is deemed as converged and the evolution terminates. 

 Population Convergence: A termination method that stops the evolution when the 

population is deemed as converged. The population is deemed as converged when the 

average fitness across the current population is less than a user-specified percentage away 

from the best fitness of the current population. 

 Gene Convergence: A termination method that stops the evolution when a user-specified 

percentage of the genes that make up a chromosome are deemed as converged. A gene is 

deemed as converged when the average value of that gene across all of the chromosomes 

in the current population is less than a user-specified percentage away from the maximum 

gene value across the chromosomes. 
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