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1. About ClusterProject 1.0

ClusterProject is a program that provides a computational and graphical environment for
analyzing data from DNA microarray experiments, or other corresponding cluster datasets. The
program ClusterProject organizes and analyzes the data in various ways and allows the organized
data to be visualized.

This manual is intended as a reference for using the software, meanwhile as a comprehensive

introduction to the methods employed. Many of the methods are drawn from standard statistical

cluster analysis. There are excellent textbooks available on cluster analysis.
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< MDI (Multi-Document Interface) framework enables the user to work with more than one
document at the same time.

<~ The various clustering algorithms are available with custom-preferences.
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<~ Project manages the all resources under four types: data, preference, graph and report with a
tree browser.

<~ The various graphical modes include data table, text report, 2D distributing, 3D distributing,
grid matrix, tree, and centroid curve. These graphical modes can be saved as BMP or PDF

documents.

2. System Requirement

2 Hardware: PC 586 or higher; 64MB RAM or more; at least 10 MB free space on
hard disk.

2l Operating System: Microsoft Window 95/98, Windows 2000 or Windows XP.

a2 Recommended Operating System: Microsoft Window 2000/XP.

3. Install and Update

All related files for ClusterProject 1.0 are compressed into ClusterProject.exe.
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+ Installing ClusterProject

1) Download the ClusterProject.exe file to a temporary directory.

2) Click ClusterProject.exe to install this program.

3) Follow the installation wizard to finish the installation.

ClusterProject can be installed on your computer in the folder which you nominate during the

installation process. The defaulted installation path is: C:\Program Files\ClusterProject\.

+ Uninstalling ClusterProject

To remove ClusterProject, one way is to open the Windows Control Panel, double click
Add/Remove Programs, select ClusterProject, and then click Add/Remove. Another way is to click
"Uninstall ClusterProject" in Start/Programes Menu.

+ Update new version

You can get the latest version from http://www.cab.zju.edu.cn/english/ics/faculty/zhujun.htm or

send E-mail to Authors: hypan@scbit.org or jzhu@zju.edu.cn.

4. Basic Operation

4.1 Inserting Data

+ Click File/New menu or the first button Eon the Toolbar. A dialog will be
popped up.

Daialog §|

File Hame: | Open
Choose the delimiter that separates the fields

i* Tah i Space
" Comma " Semicolon "

Choose the =ign that denotes the miz=zing item (=)

(* Empty

" Dot '-ﬁ
[1):4 | Cancel

Currently, ClusterProject reads two types of text files in particular formats described below. It
offers several the delimiters to separate the text, meanwhile, missing values are acceptable and

are designated by several signs. The default postfix of original data files is *.sdt and other
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postfixes such as *.txt can be acceptable. Such text files can be created and exported in any

standard spreadsheet program, such as Microsoft Excel.

Type 1: The first standard format of input file is described as follow.

In this standard format,

rows represent genes and columns represent samples or treatments or time points in a biological

process. For a simple time course, a minimal input file would look like this:

YORF
1 1.3 24 5.8 24
0.9 0.8 0.7 0.5 0.2
0.8 1.4 4.2 10.1 10.1
1.1 1.3 0.8 0.4
1.2 1 1.1 4.5 8.3

Each row (gene) has an identifier (in green) that always goes in the first column, and each
column (sample) has a label (in blue) that is always in the first row. The remaining cells in the table
contain data for the appropriate gene and sample. The “5.8” in row 2 and column 4 means that the
observed data value for gene YAL0OO1C at 2 hours is 5.8.

It is possible to have additional information in the input file. A maximal ClusterProject input file

would look like this:
YORF NAME GINDEX Omin 30 min lh 2h 4h
EINDEX 1 1 1 1 1
YALOO1C TFIIC 138 KD SUBUNIT 1.3 24 5.8 24 1
YALOO2W  UNKNOWN 0.9 0.8 0.7 0.5 0.2
YALOO3W ELONGATION FACTOR EF1-BETA 0.8 2.1 4.2 10.1 10.1
YALOO05C 1.1 1.3 0.8 0.4

The yellow cells are optional. By default, ClusterProject uses the ID in column 1 as a label for

S G g S G —Y

CYTOSOLIC HSP70

each gene. The NAME column allows you to specify a label for each gene that is distinct from the
ID in column 1. The GINDEX column allows user to define the class label of each gene and the

EINDEX row allows user to define the class label of each sample.

Type 2: Another standard format of original file would look like this:

[TYPEL.0]

0 min 1 -1.0
30 min 1 2.0
1h 1 3.0
0 min 1 -0.6
30 min 1 0.12

1h 1 -0.36

The red cell [TYPEL.0] is necessary and the input should be accordant to this flag. The column

_4_
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of Rep is indispensable whether the experiment has replication or not. If there is no replication, all
values of this column are set to one. It can have additional factors in the input file such as dye,

treatment or array et al.

4.2 Cluster Methods

+ Click the button (Figure 1) on the Toolbar. In current, ClusterProject contains two

common kind methods: hierarchical and partition clustering methods.

Hethod: |P1nu.=e Choose. . . ﬂ
|]’1e'n';e Choose
Partition
Figure 1

Cluster analysis groups objects based on the information found in the data to describe their
relationships. The goal of cluster analysis makes that the objects in a group will be similar (or
related) to each other and different from (or unrelated to) the objects in other groups. There are

abundant clustering methods available in many literatures.

4.2.1 Hierarchical Clustering

+ Click Hierarchical Clustering attribute, you can perform hierarchical clustering
methods on your data to obtain meaningful results. Meanwhile you can select
Gene or Array or both to perform cluster analysis. ClusterProject currently
implements ten types of agglomerative hierarchical and one divisive hierarchical
clustering ( ). It is notable that the generic term “array” refers to tissue types,
treatments or time points in a biological process. The meaning of this term is
same in other interfaces.

Hierarchical Configuration

Hierarchieal Clustering |Distance Metric] ‘i’alidationl

f* Agzlomerative v Gene ¥ Array

i Divisive [~ Split Tree j
hverage Linkagze (UFGMA) - =
| -] —

Single Linkage
Complete Linkage
Median Linkage

= a hierarchical series of nested

cluFlexible Linkage individual points at the bottom
to |UPGM Linkage top. A diagram called a dendro—
graWPMh Linkage ierarchy.
Ward Linkage
= il
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If you click Split Tree, you can split the hierarchical tree at a desirable height level and then
obtain several similar groups.

See also: Hierarchical Clustering

4.2.2 Partition Clustering

4+ Click Partition Clustering attribute, you can perform partition clustering methods
on your data. Meanwhile you should input the cluster number advanced.
ClusterProject currently performs five types of partition clustering: K-Means,
K-Medoid, PAM, CAST and GACLUS (which is based on genetic algorithms, See also:
Genetic Algorithm).

Partition Configuration §|

Partition Clustering l]]ista.m:e Metric ] Validatiu:-n]

f* K-Means (" GRCLUS

" E-Medord

- e g =
(" CAST [ Mrray j
Comment

Fartition clustering techniques create a ome—lewel [(unmested]
partitioning of the data points. They generally need a zZiven
mumber of clusters (K). They typically find optimal K clusters
that try to minimize or maximize a global objective function.

fifE HiH

If you click GACLUS, you can configure the attributes of GACLUS such as selection, crossover,
mutation, and reinsertion etc.

See also: Partition Clustering

4.3 Distance Methods

+ Click Distance Metric attribute, you can select various distance metrics to

combine with a particular clustering method.
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Hierarchical Configuration

Hierarchical Clustering Distance Metrie |Validation

© Bragfurtis 0 Madel " SqPaarson
" Manhattan " Clarl (" Cosinefnzle { Spearman

i Chebyshew ™ hwveragedlot (™ Fearson (™ Kendall Tam
" Canberra " Cowariance " UnFearzon

Comment

Dictance metrics measure the proximity and affinity of two objects.
Thiz project inecludes fifteen dictance measurements.

TR B | |

All clustering algorithms use a dissimilarity or similarity measurement between samples or
genes to compare patterns of expression. In current, this software contains fifteen distance metrics.
Among these metrics, six metrics are correlation coefficients (cosine-angle correlation, Pearson
correlation, Uncentered Pearson correlation, Squared Pearson correlation, Spearman rank-order

correlation, and Kendall’s Tau correlation).

4.4 Validation Methods

4+ Click Validation attribute, you can select two evaluation metrics to combine with a

particular clustering method.

Partition Configuration &|

Partition Clustering] Distance Metrie WYalidation l

[w Do wou want to calenlate the walidation measures?

[ Internal

Comment

¥alidation indices will offer the ewaluation indices that may
azsess the quality of the clustering results. Two basiec types
of indices are internal and external indices.

fiRE HiE
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In current, ClusterProject contains three types of external indices: Adjusted rank index,
Jaccard index, and FM index and four types of internal indices: homogeneity and separation,
VRC criterion, and silhouette width.

See also: Evaluation Indices

4.5 Output Files

ClusterProject writes up to several output files for each clustering run. The root filename of each
file is whatever text you name the project, and the project file will save configurations and source
data filename.

The output filename extension specifies the type of output file. It can be one of the following
names: *.sdt, *.gdt, *.rpt.

+ *.sdt Document of original data, which are tab-delimited text file. In fact, it is the copy of
the file which you insert into this project.
See also: Data

+ *.gdt Document of graph results, it can be one of the following types: 2D/3D distribution
(*_2D.gdt or *_3D.gdt), hierarchical tree (*_T.gdt), expression profile (*_C.gdt or *_M.gdt). If
clustering for genes, the filename will add _G. For example, if it is 2D distribution for genes,
the document is *_G_2D.gdt. If clustering for arrays, the filename will add _A. It is same for
other graph results and text report. These files are automatically read in ClusterProject when
you open the corresponding *.prj file. You can browse them by a graph viewer embedded in
ClusterProject.

See also: Graph

+ *rpt Document of text report, it contains the configurations which you select and the

cluster results of each run.

4.6  Graphical Representation

The raw data and cluster results obtained by various cluster analysis can be visualized by
several types ways and assist the biologists to obtain meaningful conclusions. Click Graph menue
of the left view, you can see several graph types. The main types of visualizations are described

as follow:
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Fig.1. After PCA, the first two PCs are Fig.2. After PCA, the first two PCs are
extracted. The expression pattern can be extracted. The expression pattern

can be represented by 2-dimensional
represented by 2-dimensional graph. The graph. The x-axis represents PC1,

x-axis represents PC1 and y-axis PC2. y-axis PC2 and z-axis PC3.

The primary data is combined with a graphical representation by representing each data point
with a color that quantitatively reflects the original experimental observation. Color scales range

usually from saturated green (negative max absolute value) to saturated red (positive max)

1 Gene Expression Profile l 1

Fig.4. Expression patterns of all genes or

Fig.3. The dendrogram of cluster groups using samples and the mean profiles of

Hierarchical Clustering methods.
groups.
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Fig.5. The expression profile of raw gene Fig.6. The expression profile of clusters using

expression data.

4.7 Context Menu

Partition Clustering Methods.

+ Click the right of mouse on a graph, a particular menu will be popped up.

The detailed context of this menu is as follow:

Save
Prink

ZO0M ...
Zoom Best Fik
Default Size

Datalkten

Pallette r
v Text
v Sample

Save

Print

Zoom

Zoom Best Fit
Dataltem
Palette

Text

Sample

Multicolor

Save as Windows Bitmap file or PostScript file.
You can export your graph results and share
them with others.

Print graph results.

Show a pop-up dialog with a slider. You can
move the slider to zoon in/out the graph.

Show the graph as the “best” size for the window.
Show or hide the components in the graph.
Change the palette for profile graph.

Show or hide the topic of the graph.

Show or hide the color sample of the graph.

Change the color setting: Multicolor or Monochrome
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4.8 Graph Viewer

Click Tools/Graph viewer menu, you can take a quick view for your graph file without open a
project by an embedded graph viewer. When you start this menu, a file-open dialog will popped up,

and you can input a *.gdt file, Graph Viewer will show it.

4.9 Data Browser

Click Tools/Data Browser menu, you can take a quick view for the original data without open a
project or insert it into a new project. When you click this menu, a file-open dialog will be popped

up, and you can input an existing *.sdt file, Data Browser will show it in a grid table.

4.10 Data Preprocessor

+ Click Tools/Preprocessor menu. You can filter and transform the data inputted.

IData Freprocessor §|

Filter Tran=formation

[ %Present » = li [ Genel [ Array
[~ SD (Geme Vector) >= |° g
[ At least I— J
Observations abs (Wal)l > = I— :
[ MaxVal - Minval >= | -
~
~

| Save | | Cancel |

The Filter menu allows you to remove genes that do not have certain desired properties from
your dataset, and the Transformation menu, you can perform a number of operations that alter
the underlying data in the imported table.

See also: Preprocessing

4.11 Principle Component Analysis (PCA)

4+ Click Tools/PCA menu allows you to perform the PCA process on your data.
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PCA Configuration

Graph Type

{# 30 Graph

(" I Graph

0K | Cancel

It can extract the first p characteristic principal components which are mutually uncorrelated and

orthogonal. Each variation of an object can be written exactly as a linear combination of these p
characteristic principal components. The result is visualized by 2-dimensional or 3-dimesional
graph.

See also: PCA

4.12 Mixed Model Approach

+ Click Tools/Mixed Model menu, you can implement the mixed model analysis on
your data. It allows you to input the expression of the model used.

Nized Linear Nodel Analysis Configuration §|

FileHame: D:\Haiwan‘MyFrocedurehData‘iDataleg?. txt

Effects: | -

hrray

Dye

Var

Fenekhrray

Genedllye

Wl Gene*Var i

Model:

logInten = |Gene Array Dye Yar Genekbrray Genekllye Gene®¥

Option

Eztimate Variance Components: |MIH'LTQE1 ﬂ
Ectimate Fixed Effects: ||:|T.5 ﬂ
E=timate Random Effects: hl
[ Jacldmife

0K Cancel |

Option allows you to estimate variance components and fixed effects, and predict random
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effects. It offers different methods for estimating the variance components (MINQUEO, MINQUE1
and REML) and predicting the random effects (LUP and AUP) and fixed effects (OLS and GLS). If
selecting Jackknife checkbox, it can test for the significance of the estimated variance
components and effects.

The standard format of the original data looks like this:

0 min 1 -1.0
30 min 1 2.0
1h 1 3.0
0 min 1 -0.6
30 min 1 0.12

1h 1 -0.36

The column of Rep is indispensable whether the experiment has replication or not. If there is no
replication, all values of this column are set to one. It can have additional factors in the input file
such as dye, treatment or array et al. This is tab-delimited text file.

Mixed model approaches are widely used to partition observed phenotypes into various sources
of variation. They have the flexibility to handle a wide variety of experimental designs and data
shapes including balanced and unbalanced data, and to be easily extended to more complicated
biological models.The detailed descriptions of this method can be seen from the literatures (Miler,

1974; Searle, 1992; Zhu, 1994; Zhu and Weir, 1996).
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5. Knowledge Base

5.1 Data Preprocessor
5.1.1 Transformation

5.1.1.1 Logarithmic transformation

In the log transformation, the logarithm transformation function is applied to each expression

level in the data.

i = log, X;j
or
Yij = log,, Xjj

5.1.1.2 Mean/Median centering

Here the mean or median will be subtracted from each data element:

Yi =% =% or Yii = Xij = Xined j
1 Xi(ns1y/2 n odd
X; :Hzxij Xnedj =31 . \
j=1 E(Xi(n/z) + Xi(n/2)s1) N €ven

where Yi is mean of the vector x;and X is median of the ascending sorted vector x’;.

med j

5.1.1.3 Standardization

The expression vectors are standardized to have mean 0 and standard deviation 1(by
subtracting the mean of each row in the data, and then dividing by the standard deviation of the

row).

where X =lZXij and ¢, :\/le:(xij -X)
n n ;

j=1
5.1.1.4 Length One

The expression vectors are transformed to have mean 0 and length 1.
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5.1.1.5 Population Center

Here the population mean will be subtracted from each data element:

where X is the total mean of the population.

5.1.2 Filtering

Due to the large number of genes, the full gene expression data set is usually filtered to reduce
the size of the data. Filtering removes genes that do not vary significantly across the experiments
and do not have certain desired properties from your dataset. Filtering also facilitates biological
interpretation because genes that do not vary significantly across the experiments are usually not
of great interest to the biologist. The currently properties that can be used to filter data are:
< % Present >= X. This removes all genes that have missing values in greater than (100-X)
percent of the columns.

< SD (Gene Vector) >= X. This removes all genes that have standard deviation of observed
values less than X.

<~ At least X observations abs (Val) >= Y. This removes all genes that do not have at least X
observations with absolute values greater than Y.

< Max Val-MinVal >= X. This removes all genes whose maximum minus minimum values are

less than X.

5.2 Distance Metrics

All clustering algorithms use a dissimilarity or similarity measurement between samples or genes
to compare patterns of expression. Let X;= {Xi1, Xi2,**+, Xik,*++, Xin} @nd X; = {Xj1, Xj2,**+, Xj, * ** , Xjn}

be two vectors of expression values for object i and object j.

5.2.1 Euclidian distance

Euclidian distance is a very commonly used distance measurement. It is basically just the sum of

the squared distances of two vector values (xi, Xj). The Euclidian distance is given by the formula:

DG, j) = «/i(xik - Xjk)2
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Euclidian distance will be variant to both adding and multiplying all components with a constant
factor, it is necessary to normalization the dataset to remove the effect of scales before using
Euclidian distance. It is also variant to the dimension of the vectors, for example if missing values

reduces the dimension of certain vectors.

5.2.2 Manhattan distance

Manhattan distance is the sum of the absolute distances of two vector values (xi, xx) on a

compound basis.
- - U
Dq, J)= Z| Xie = X |
k=1

Basically this is a linear version of the Euclidian distance, with the same advantages and

disadvantages.

5.2.3 Chebyshev distance

Chebyshev distance is the maximum of the absolute distances of two vector values (X, Xj).

D(, )= max | Xie = X |

5.2.4 Canberra distance

.. D] X — X
D(l, J): | ik ]k|
o | X + X |

5.2.5 Bray-Curtis distance

5.2.6 Clarl distance

5.2.7 Averaged Dot

The simplest measurement of association between two vectors is the inner product. The inner
product between two points is defined as the sum of products of components and can be modified

by defining an adjusted or ‘average’ value;
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R
D(, J) :Hzxikxjk
k=1

which is independent of the sample size n.
5.2.8 Covariance

The covariance distance between two points is defined as follow:

S (X — X)X, ~ X))
Cov(i, j) = ¥

n-1
Adding or subtracting constant numbers to the vectors does not alter the magnitude of the
covariance, but multiplying by constants does. Covariance values are also independent of the

sample size n, since the numerator is divided by n —1.

5.2.9 Distance based on mixed-model

The phenotype value of the jth feature for the ith object can be expressed by a mixed linear
model,
Yik =4+ O+ T + &
where Y, is the observed value of feature j for object i in k replication; 4 is the mean
expression level of object i, fixed effect; a;~ (0, 0'2) is the random effect of feature j
T~ (0, O'f)is the interaction between the i-th object and the j-th feature and the random error
term &, ~ (0, o’)is the residual effect.

For any pairs of objects, the similarity between object i and object j is defined as:
Dz(i,j) = %(#i - /Uj)z + O-rz(i,j)
=dij) + o)
where d
O'f(iﬂj) is the object *feature interaction variance for object / and object j. The squared difference

2 2
d(i,i) (i, )

response ‘shape’. O'f(iyj)can be obtained by the ANOVA method for balanced data. For the

is half of the squared difference of feature means between object i and object j, and

is a parameter of marginal means difference and the interaction variation, o is of the

2
o(i,]

method (Searle et al., 1992) or Minimum Norm Quadratic Unbiased Estimation (MINUQE) method
(Rao, 1970).

missing data, o,;; can be estimated by restricted maximum likelihood estimation (REML)

The similarity between two objects is then estimated by

A 1 . _ R
D(zi,j) :E(yi.. - yj..)2 +O-r2(i,j)
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5.2.10 CosineAngle Correlation

In term of vector components, c0s & can be expressed as:

n
Z Xi X i
k=1
< 2 : 2
\/ D X \/ R
k=1 k=1

When @ = 0both x; and x; lie on the same straight line and are thus linearly dependent. For

cosfl =

0 =90°, the vectors are orthogonal, and in general -1<cos @ <1.

5.2.11 Pearson Correlation

Pearson correlation coefficient is a widely used measurement of association between two

vectors. Pearson correlation ris given by the formula:

n

4 (X = X)X = X;)

R(i, ) = ——- n
Z(Xik_x)z Z(Xjk_Yj)z

where X: is the mean of the vector x; and 71. is the mean of the vector x;. The correlation coefficient
is invariant under scalar transformation of the data (adding, subtracting or multiplying the vectors

with a constant factor).

5.2.12 Uncentered Pearson correlation

This is basically the same formula as above, except the mean is expected to be 0.
Z Xikxjk
R(i. 1) = — R
\/Z(Xik_fi)z Z(Xjk_rj)z
k=1 k=1

Curves with “identical” shape, but different magnitude have an uncentered correlation coefficient
< 1, whereas the Pearson correlation coefficient in this case would be 1. If just the magnitude of

the curve is important, then the uncentered correlation value is better.

5.2.13 Squared Pearson correlation distance

The squared Pearson correlation coefficient calculates the square of the Pearson correlation

coefficient, so that negative values become positive.
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2
n

Z(Xik _Yi)(xjk _Yj)
R(i, j) = | ——2

n

Z (Xik _Yi)2 zri(xjk -

If the correlation approaches —1, the squared Pearson will approach 1, i.e. a perfect match. In
this way, samples or genes with an opposite behavior will be seen as identical. This is especially

good for identifying reciprocal expression profiles (e.g. regulatory or inhibitory mechanisms).

5.2.14 Spearman Rank-Order correlation distance

Spearman rank correlation is nonparametric or rank correlations. The key concept of
nonparametric correlation is this: If we replace the value of each xj and xj by the value of its rank
among all the other x;’s (x;’s) in the object, that s, 1, 2,..., n, then the resulting list of numbers will
be drawn from a perfectly known distribution function, namely uniformly from the integers between
1andn.

Let R; be the rank of x; among the other Xx/s, S;be the rank of x;among the other x/'s, the sum

squared difference of ranks is defined as:

n

D:Z(R—Si)2

i=1

When there are no ties in the data, then the exact relation between D and r; is

R, | 6D

When there are ties, then the exact relation is slightly more complicated: Let fx be the number of
ties in the kth group of ties among the R/’s, and let g,, be the number of ties in the mth group of ties

among the S/s. Then the exact relation between D and rs is

- 6[D+Z(H n+f2(% gﬂ

n°-n

R -]

n°-n n°-n

Rs(i’ J) =

Notice that if all the f, and all the g, are equal to one, meaning that there are no ties, the

equation (2) reduces to equation (1).

5.2.15 Kendall’'s Tau correlation distance

Kendall’'s Tau is even more nonparametric than Spearman’s Rank correlation. Instead of using
the numerical difference of ranks, it uses only the relative ordering of ranks: higher in rank, lower in

rank, or the same in rank. Considering all 1/2n(n-1) pairs of data points, a pair is called as
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concordant if the relative ordering of the ranks of the two x;/s (or for that matter the two x;'s
themselves) is the same as the relative ordering of the ranks of the two x;'s (or for that matter the
two x;'s themselves), a pair is called as discordant if the relative ordering of the ranks of the two
X/s is opposite from the relative ordering of the ranks of the two x/s. If there is a tie in either the
ranks of the two x;'s or the ranks of the two x;’s, then the pair is not called as either concordant or
discordant. If the tie is in the x/'s, the pair is defined as an “extra y pair.” If the tie is in the y’s, the
pair is defined as an “extra x pair.” If the tie is in both the x’s and the y’s, we don’t call the pair
anything at all. Kendall’st is now the following simple combination of these various counts:

concordant — discordant

(i, J) = - =
JJconcordant + discordant +extra — yv/concordant + discordant + extra — x

5.3 Clustering Algorithms

Cluster analysis is a useful exploratory technique, which is essential in data mining process for
exploring natural structure and identifying interesting distributions and patterns in underlying data.
Cluster analysis groups objects based on the information found in the data describing the objects
or their relationships. The objective of cluster analysis is to find groups in a given data set so that
objects in the same group are more similar to each other and different from the objects in other

groups.

5.3.1 Hierarchical clustering

Hierarchical clustering proceeds successively by either merging smaller clusters into larger ones,
or by splitting larger clusters. The result of the algorithm is to produce a tree of clusters, ranging
from clusters of individual points at the bottom to an all-inclusive cluster at the top. A diagram
called a dendrogram which shows how the clusters are related and describes the order in which
points are merged (bottom-up view) or clusters are split (top-down view). According to the
methods producing the hierarchical tree, hierarchical clustering algorithms can be further divided
into agglomerative algorithms and divisive algorithms.

One of the attractions of hierarchical techniques is that they correspond to taxonomies that are
very common in the biological sciences, e.g., kingdom, phylum, genus, species etc. Another
attractive feature is that hierarchical techniques do not assume any particular number of clusters.
Instead any desired number of clusters can be obtained by “cutting” the dendrogram at the proper
level and then a clustering of the data items into disjoint groups is obtained. Finally, hierarchical

techniques are thought to produce better quality clusters.
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5.3.1.1 Agglomerative clustering

Agglomerative clustering starts with the points as individual clusters and iteratively reduces the
number of clusters by merging the two most similar objects or clusters, respectively, until only one
cluster is remaining. This requires defining the notion of cluster proximity.

The procedures of many hierarchical agglomerative clustering methods can be expressed by the

following algorithms, which are known as the Lance-Williams algorithm.

Basic Agglomerative hierarchical Clustering Algorithm

(1) Calculate the distance between all objects and construct the similarity distance matrix.
Each object represents its own cluster.

(2) Find the two clusters with the minimum distance to each other and merge.

(3) Update the distance matrix to reflect the distance between the new cluster and the original

clusters.

(4) Repeat step (2) and (3) until only a single cluster remains.

The key step of the previous algorithm is the calculation of the distance between two clusters,
and this is where the various agglomerative hierarchical techniques differ. Most of the cluster
proximities that in the ClusterProject can be viewed as a choice of different parameters (in the
Lance_Williams formula) for the distance between clusters k and r, where r is formed by merging

cluster p and q.

D, =a,D,, +a,D+ /D, +;/‘ka — Dkq\

Table 1 The parameters for four agglomerative clustering algorithms.

Cluster Method a, a, B /4
Single Linkage 172 1/2 0 -1/2
Complete Linkage 12 1/2 0 1/2
WPGMA Linkage 12 1/2 0 0
Average Linkage I’1p/nr nq/nr 0 0

2 2 2 2 2 2
D;. = ,D;, +a,D;, + 8D}, +7|D;, — D
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Table 2 The parameters for five agglomerative clustering algorithms.

a a Y
Cluster Method P ! p
Median Linkage 12 12 -1/4 0
Centroid 2
n,/n, n,/n, -n.n. /n 0
et ./ y .,/
Flexible Group
1-A)n /n, 1-A)n,/n, <1 0
Linkage (=2n,/ (1=An/
Flexible Linkage 1-2)/2 (1-2)/2 <1 0
Ward Linkage (n, + nk)/(nr +n)  (n,+ nk)/(nr +n) N /(n+n) 0

The following are the detail of some of the most commonly used.

Single linkage (nearest neighbor)

In this method, the distance between two clusters is defined to be minimum of the distance
between the two points in the different clusters (i.e., by the “nearest neighbors”). If there are
several equal minimum distances between clusters during merging, single linkage is the only well
defined procedure. lts greatest drawback is the tendency for chain building: Only one (random)
small distance is enough to enforce the amalgamation of two otherwise very different clusters.
Therefore, the resulting clusters tend to represent long "chains". Single linkage is good at handling

non-elliptical shapes, but is sensitive to noise and outliers.

Complete linkage (furthest neighbor)

In this method, the distance between two clusters is determined by the maximum distance
between any two points in the different clusters (i.e., by the "furthest neighbors"). Complete
linkage usually performs quite well in cases when the objects actually form naturally distinct data
clouds in the multidimensional space. If the clusters tend to be somehow elongated or to be a
"chain" type nature, then this method is inappropriate. Since only one (random) large distance is
enough to merge two clusters, clusters tend to be small. Complete linkage is less susceptible to

noise and outliers, but can break large clusters, and has trouble with convex shapes.
Unweighted pair-group average linkage

In this method, the distance between two clusters is calculated as the average distance of the
pair-wise distances between all pairs of points in the two different clusters. This method is very

efficient when the objects form natural distinct "clumps," however, it performs equally well with

elongated, "chain" type clusters. Since the distance between two clusters lies between the
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minimum formation of single linkage and the maximum formation of complete linkage, this
procedure empirically shows no tendencies to either extreme described above, and is therefore
more stable to unknown data point distributions. Admittedly, if there are several equal distances,
the sequence of the amalgamation is critical. Note that the abbreviation UPGMA is used as well to

refer to this method as unweighted pair-group method using arithmetic averages.

Weighted pair-group average linkage

This method is identical to the unweighted pair-group average method, except that in the
computations, the size of the respective clusters (i.e., the number of objects contained in them) is
used as a weight. Thus, this method (rather than the previous method) should be used when the

cluster sizes are suspected to be greatly uneven.

Centroid linkage

In this method, the proximity between two clusters is calculated as the distance between two
centroids of two clusters. Centroid linkage has a characteristic—often considered bad that other
hierarchical clustering techniques don’t posses: the possibility of inversions. In other words, two
clusters that are merged may be more similar that the pair of clusters that were merged in a
previous step. For other methods, the similarity of clusters merged decreases (the distance
between merged clusters increases) as proceeding from singleton clusters to one inclusive

cluster.

Ward's method

This method is distinct from all other methods because it uses an analysis of a variance
approach to evaluate the distances between clusters. This method attempts to minimize the Sum
of Squares of any two (hypothetical) clusters that can be formed at each step. In general, this

method is regarded as very efficient and tends to create equally sized clusters of small size.
Time and Space Complexity

Hierarchical clustering techniques typically use a proximity matrix. This requires the
computation and storage of m? proximities, a factor that limits the size of data sets that can be
processed. Once the distance matrix is available, the time required for hierarchical clustering is O
(m?).
Limitations and problems

We summarize the problems with agglomerative hierarchical clustering:

< No global objective function is being optimized.

<~ Anincorrect merging of clusters in an early stage often yields results, which are far away from
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the real cluster structure.
Good local merging decisions may not result in good global results.
Agglomerative hierarchical clustering techniques have trouble with one of more of the

following: Noise and outliers, non-convex shapes, and a tendency to break large clusters.

5.3.1.2 Divisive clustering

Divisive clustering starts with one, all-inclusive cluster and, at each step, a biggest cluster is split

into two smaller clusters until each cluster contains only a single sample. In this case, one should

decide which cluster to split and how to split the bigger one into two smaller ones at each step.

In divisive procedures, fundamentally all subsets have to be analyzed so that divisive

procedures have an algorithmic complexity in the magnitude of O (2"). Divisive procedures

immediately start with interesting cluster arrangements and are much more robust.

Here we introduce a robust divisive clustering algorithm—Diana.

Basic Diana Clustering Algorithm

1)

First time the selected cluster C is the whole data. To divide the selected cluster C with
cardinality n(C) into two subgroups, the algorithm first looks for its most disparate
observation (i.e., which has the largest average dissimilarity to the other observations of the
selected cluster). That is, for each member x4 € C, one computes the ‘distance’ from the rest
of C by

D, =((C)-17" > d(x,y)

yeC\{x }

and identifies most disparate observation x1* which has largest Dy, x.

2) This disparate observation initiates the “splinter group”. In subsequent steps, the algorithm

reassigns observations that are closer to the “splinter group” than to the “old party”, the
observations in the “splinter group” are noted as xf, e, Xk+1*. This procedure continues

iteratively till Dy.q, X w1 <0 where
Dy, =(n(c)—k -1 > d(X,,,»Y)

yeC\{x, o, x )
k

k7Y d (T X))

i=1
and xx+1 maximizes Dy+1, X x+1. The result is a division of the selected cluster C into two new
clusters {x1,..., Xkr1 yand C\{ x1,..., Xk+1 }-

The cluster with the largest diameter is selected. The diameter of a cluster is the largest
dissimilarity between any two of its observations. The diameter is defined as:

Diameter (s) = max {d(x, y)}
X,ye



Manual for ClusterProject 1.0

4) Continue Step 1, 2 and 3 until each cluster contains only a single observation.

5.3.2 Partition clustering

Partition clustering attempts to directly decompose the data set into a set of disjoint clusters.
More specifically, they attempt to determine an integer number of partitions that optimize a certain
objective function. The objective function may emphasize the local or global of the data and its

optimization is an iterative procedure.

5.3.2.1 K-Means

The K-Means is a very simple clustering method because it is based on a very simple principle

and provides good results.

Basic K-Means Algorithm for finding K clusters

1) Select k points as the initial centroids.

2) Assign all points to the closest centroid.

3) Re-compute the centroid of each cluster.

4) Repeat step 2 and 3 until the centroids don’t change.

The k-means algorithm has the following important properties:

1) ltis efficient in processing large data sets, due to the fact that the computational complexity of
the algorithm is O (tkmn), where n is the number of points, m is the dimension of the points X,
k is the number of clusters and t is the number of iterations over the whole data set. Usually, k,
m, t << n. It takes usually just a few seconds to calculate even datasets with 10000 elements
and more, making it a valuable tool for the investigation of datasets that are too big for
hierarchical clustering for instance.

2) Another big advantage is the moderate memory requirement for k-means clustering. Since
there is no similarity matrix to calculate the memory requirements rise with O (n).

The k-means algorithm has the following limitations and problems:

1) Itis difficult to discover correct clusters with non-convex shapes and wide different sizes

2) It often terminates at a local optimum. The K-Means objective function is minimized by
globular clusters of equal size or by clusters that are well separated.

3) The k-Means algorithm is also normally restricted to data in Euclidean spaces because in
many cases the required means and medians do not make sense.

4) The major drawback of the k-means algorithm is that the number of clusters has to be

specified in advance and seriously affected by the choice of the initial centroids.



Manual for ClusterProject 1.0

5.3.2.2 K-Medoid

In this project, K-Medoid is implemented a slight variation on K-Means clustering in which the
median instead of the centroid of items are used. Obviously, K-Medoid has similar properties and

problems. It computes more expensively than K-Means.

5.3.2.3 PAM (Partitioning Around Medoids)

The objective of PAM clustering is to find a non-overlapping set of clusters such that each
cluster has a most representative point, i.e., appoint that is most centrally located with respect to

some measure. These representative points are called medoids.

Basic PAM Algorithm for finding K clusters

(1) Select K initial points. These points are the candidate medoids and are intended to be the
most central points of their clusters.

(2) Consider the effect of replacing one of the selected objects (medoids) with one of the
non-selected objects. The distance of each-selected point from the closest candidate medoid
is calculated, and this distance is summed over all points. This distance represents the “cost’
of the current configuration. All possible swaps of a non-selected point for a selected one are
considered, and the cost of each configuration is calculated.

(3) Select the configuration with the lowest cost. If this is a new configuration, then repeat step 2.

(4) Otherwise, associate each non-selected point with its closest selected point (medoid) and
stop.

The PAM approach is not restricted to Euclidean spaces and is likely to be more tolerant of
outliers. However, finding a better medoid requires trying all points that are currently not medoids

and is computationally expensive.

5.3.2.4 CAST

CAST uses as input the similarity matrix S. The affinity of an element v to a putative cluster C is
aV)=>_ S(,v).

The algorithm uses a single parameter t, clusters are generated one by one, the next cluster is
started with a single element, and elements are added or removed from the cluster if their relative

affinity is larger or lower than ¢, respectively, until the process stabilizes.
Basic CAST Algorithm for finding K clusters
While there are unclustered elements do:

Repeat ADD and REMOVE until no changes occur:



Manual for ClusterProject 1.0

ADD: add an unclustered element v with maximum affinity to C if a(v) > t|C|.
REMOVE: remove an element u form C with minimum affinity if a(u) <= t|C|.

Add C to the list of final clusters.

5.3.3 Genetic clustering

The traditional clustering methods, such as agglomerative or divisive hierarchical and partition
clustering, use a greedy algorithm, it looks observations into a particular cluster that is deemed
best at that point in the algorithm but may not be the best globally when all information is
considered. Recently, the use of global optimization techniques such as Simulated Annealing and
Genetic Algorithms (GAs) has emerged in the clustering fields (Cowgill et al., 1999; Maulik and
Bandyopadhyay, 2000).

Genetic Algorithms (GAs) introduced by Holland (1962) are randomized search and
optimization techniques that guided by the principle of evolution and natural genetics. Because
they are aided by large amounts of implicit parallelism (Grefenstettee and Baker, 1989), GAs are
capable of searching for optimal or near-optimal solutions on complex, large spaces of possible
solutions. Furthermore, GAs allows searching of these spaces of solutions by simultaneously
considering multiple interacting attributes. Because of these advantages, GAs may represent

another useful tool in the classification of biological phenotypes based on gene expression data.

5.3.3.1 HGACLUS

The detailed description is described by Pan et al. (2003).
5.3.3.2 KGACLUS

The detailed description is described by Maulik and Bandyopadhyay (2000).
5.3.3.3 COWCLUS

The detailed description is described by Cowgill et al. (1999).
5.3.4 Cluster Validation

Cluster validation refers to procedures that evaluate the results of cluster analysis in a
quantitative and objective fashion. In the statistics literature, cluster validation procedures are
divided cluster into two main categories: external and internal criterion analysis.

External criterion analysis validates a clustering result by comparing it to a given “gold standard”
which is another partition of the objects. The gold standard must be obtained by an independent
process based on information other than the given data set. There are many statistical measures
that assess the agreement between an external criterion and a clustering result. For example,

(Milligan et al., 1983) and (Milligan and Cooper, 1986) evaluated the performance of different



Manual for ClusterProject 1.0

clustering algorithms and different statistical measures of agreement on both synthetic and real
data.

Internal criterion analysis uses information from within the given data set to represent the
goodness of fit between the input data set and the clustering results. For example, compactness
and isolation of clusters are possible measures of goodness of fit.

For validation of clustering results, external criterion analysis has the strong benefit of providing
an independent, hopefully unbiased assessment of cluster quality. On the other hand, external
criterion analysis has the strong disadvantage that an external gold standard is rarely available.
Internal criterion analysis avoids the need for such a standard, but has the alternative problem that
clusters are validated using the same information from which clusters are derived. Different
clustering algorithms optimize different objective functions or criteria. Assessing the goodness of
fit between the input data set and the resulting clusters is equivalent to evaluating the clusters

under a different objective function.
5.3.4.1 Internal Indices
Variance Ratio Criteria
Variance ratio criteria is defined as the following formula:

trace (B)/(k —1)
trace (W)/(n—k)

VRC =

where n and k are the total number of points and the number of clusters in the partition,
respectively. B and W are the covariance matrices of between and the within k-clusters sums of
squares. VRC has intuitive appeal to express what constitutes ‘true’ clusters structures. VRC
measures the degree of separation between clusters and homogeneity within clusters. Hence, a

better clustering algorithm is expected to have a relatively larger VRC value.

Figure of Merit

FOM is defined as the root mean squared deviation in the left-out experimental condition of the
individual gene expression levels relation to their cluster means. Assume that a clustering
algorithm is applied to the data from experimental conditions 1, 2,..., (1), (+1),..., n and
condition j is used to estimate the predictive power of the algorithm. Let there be K clusters, Cy,
Co,..., Ck Let x(g, j) be the expression level of gene g under condition j in the raw data matrix. Let
Uci(j) be the average expression level in condition j of genes in cluster C;. The FOM under the

condition j is defined as:

FOM(j,k)z\/ﬁz 2. [x(g, -V ()T

i=1 geC;
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where N is the total number of genes. FOM (j, k) measures the means squared error of
predicting the expression levels from the average cluster expression level in experiment j. Hence,
a relatively small figure of merit indicates a clustering algorithm having relatively high predictive
power
Each of the n experiments can be used as the validation experiment. The aggregate figure of
merit of all conditions is defined as:
n
FOM (k) =Y FOM (j,k)
j=1
FOM (k) is an estimate of the total predictive power of the algorithms over all the experiments for K

clusters in a data set and FOM (k) decreases as the number of clusters increases.

Homogeneity and Separation

Homogeneity is calculated as the average distance between each object and the center of the

cluster it belongs to. The formula can be described as following:

N

iZD(Xj,Zk)

=

Havg =

S |-

where X; is the jth object and z, is the center of the cluster that x; belongs to; n is the total number
of objects; D is the distance function.

Separation is calculated as the weighted average distance between cluster centers:

San = Seme 2N Ne D(C,.C))
i 1#]

where C; and C; are the centers of ith and jth clusters, and Nc; and Nc; are the number of objects in
the ith and jth clusters. Thus H,. reflects the compactness of the clusters while S, reflects the
overall distance between clusters. Decreasing H,,4 Or increasing S,y suggests an improvement in

the clustering results.

Silhouette Width

Silhouette width is a composite index reflecting the compactness and separation of the clusters,
and can be applied to different distance metrics. For each object j, its silhouette width s(i) is
defined as:

. a(i)y—b(
s(iy = =30
max(a(l),b(l))

where a(i) is the average distance of object i to other objects in the same cluster, b(i) is the

average distance of object i to objects in its nearest neighbor cluster. The average of s(i) across all
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objects reflects the overall quality of the clustering result. A larger averaged silhouette width

indicates a better overall quality of the clustering result.

5.3.4.2 External indices

An external index is defined as a measure of agreement between a clustering result and a given
“gold” standard. Since the true cluster labels are available for all of the real data sets we used, we
are able to evaluate the ability of a clustering procedure to recover true cluster labels using the
external criteria.

Consider two partitions of n objects x4,..., X, : the R-class partition U={ uy,..., uptand the
C-class partition V={v4,..., v,}. Externals indices of partition agreement can be expressed in the

terms of a contingency table, with entry n; denoting the number of objects that are both in clusters

uiandv;, i=1,..., R, j=1,..., C.

Table 3 Contingency table for two partitions of n objects

Vl V2 eee VC
Uz N1 N12 Nic Ny
u N21 N2 Nac na.
1 1 1 1 1
i i i i i
Ur NRr1 NR2 NRrc NR.
N no oo Nc n.=n

Where n; :Z; n; and n; :ZL n; denote the row and column sums of the contingency

table, respectively and letZ = ZLZ; n.? .

The following indices can then be used.

1) Adjusted Rand index: Hubert and Arabie (1985)

2) Jaccard: Jain and Dubes (1988)

M=
=
[ ]
+
=]
2
|
N
5
N——

Jaccard =(Z —n)/[
3) FM: Fowlkes and Mallows (1983)

FM =(1/2)(Z - ”){i [2] -

i=1
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5.4  Principle Component Analysis (PCA)

Principal Component Analysis (PCA), also known as Singular Value Decomposition (SVD) is an
exploratory multivariate statistical technique that allows the identification of key variables (or
combinations of variables) in a multidimensional data set that best explains the differences
between observations. Given m observations (experiments) on n variables (genes), the goal of
PCA is to reduce the dimensionality of the data matrix by finding r<n new variables. These r
principal components account together for as much of the variance in the original n variables as
possible while remaining mutually uncorrelated and orthogonal. The goal is to reduce
dimensionality while filtering noise in the process, making the data more accessible for

visualization and analysis.

5.4.1 Mathematical background

Consider m observations on n random variables represented by the matrix X. D is a distance
matrix of the input matrix X. Let P denote a (mxm) matrix of unknown coefficients such that the
quadratic form P'DP is maximized subject to the constraint P'P = I. This is equivalent to

maximizing the Lagrangean expression:
®=P"DP-AI(PTP-I)

where Al is a diagonal matrix of Lagrange multipliers (Eigenvalues). Differentiating with respect to

P and setting the equation to zero we are receiving

ag = 2D-27LP == 0 (1)
OP

The normal equations in (1) yield estimates for Eigenvalues and Eigenvectors. To compute the
principal components, the m Eigenvalues and their corresponding Eigenvectors are calculated
from the (mxm) distance matrix D using for example Singular Value Decomposition (SVD). When
D is nonsingular, all latent roots are strictly positive and each Eigenvector defines a principal
component.

SVD methods are based on the following theorem of linear algebra: any (nxm) matrix X whose
number of rows n is greater than or equal to its number of columns m, can be written as the
product of a (nxm) column-orthogonal matrix U, a (mxm) diagonal matrix W with positive or zero

elements (the singular values), and the transpose of an (mxm) orthogonal matrix V.
X=UWV'

SVD now explicitly constructs orthonormal bases for the null space and range of a matrix.

Specifically, the columns of U whose same-numbered elements w; are nonzero are an
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orthonormal set of basis vectors that span the range; the columns of V whose same-numbered
elements wj are zero are an orthonormal basis for the null space.

The matrices U and V are each orthogonal in the sense that their columns are orthonormal.
Ulu=Vvv=w'=|
The vectors of U contain our Eigenvectors and the diagonal elements of W contain the
corresponding Eigenvalues. Now the Eigenvectors of U are ordered regarding the value of their
corresponding Eigenvalues. Each Eigenvector defines a principal component. Principal
Component 1 (PC1) is the Eigenvector with the greatest Eigenvalue; PC2 is the Eigenvector with
the second largest Eigenvalue and so on.

Since U is an orthonormal matrix, it can be seen as a Transformation matrix, which transforms a

vector from the input space into the space spanned by the Principal Components.
Y = XU (2)

Each component can be viewed as a weighted sum of conditions, where the coefficients of the
Eigenvectors are the weights. The projection of object i along the axis defined by the jth principal
component is:

3

Yij = Z XitUy

t=1

Where uy is the tth coefficient for the jth principal component; x;; is the value for object / under the
tth feature. Y represents the data in terms of principal components and is a rotation of the data
from the original space of observations to a new space with principal component axes (PC Space).
The variance accounted for by each of the components is its associated Eigenvalue; it is the
variance of a component over all genes. Consequently, the Eigenvectors with large Eigenvalues
are the ones that contain most of the information; Eigenvectors with small Eigenvalues are

uninformative.

5.4.2 Visualization

Each variation of a object can be written exactly as a linear combination of these p characteristic
principal components. If we apply the first three principal components, then we can now use a
3-dimensional coordinate system, where the x-axis represents the PC1, the y-axis PC2 and the
z-axis PC3. Plotted in this space is the rotated point y;. The position of y; in Principal Component
Space gives us information of with patterns the specific objects consists. That in turn means that
points near to each other in the Principal Component Space are composed of the same basic

patterns and are therefore similar in profile.
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5.5 Genetic Algorithm

Genetic algorithms are general-purpose search algorithms based upon the principles of
evolution observed in nature. Genetic algorithms combine selection, crossover, and mutation
operators with the goal of finding the best solution to a problem. Genetic algorithms search for this
optimal solution until a specified termination criterion is met.

Genetic algorithms operate on a population of potential solutions applying the principle of
survival of the fittest to produce better and better approximations to a solution. At each generation,
a new set of approximations is created by the process of selecting individuals according to their
level of fitness in the problem domain and breeding them together using operators borrowed from
natural genetics. This process leads to the evolution of populations of individuals that are better
suited to their environment than the individuals that they were created from, just as in natural
adaptation.

Figure 1 The structure of a simple genetic algorithm

evaluaie ohjeciive Are optimization hest
function criteria met? individuals

result

.Evolutionary algorithms work on populations of individuals instead of single solution. In this way

the search is performed in a parallel manner.

5.5.1 Selection

Selection is a genetic operator that chooses a chromosome from the current generation’s
population for inclusion in the next generation’s population. Before making it into the next
generation’s population, selected chromosomes may undergo crossover and / or mutation
(depending upon the probability of crossover and mutation) in which case the offspring

chromosome(s) are actually the ones that make it into the next generation’s population.
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5.5.1.1 Rank-based fithess selection

In rank-based fitness assignment, the population is sorted according to the objective values.
The fitness assigned to each individual depends only on its position in the individuals rank and not
on the actual objective value. Rank-based fitness assignment overcomes the scaling problems of
the proportional fitness assignment. The reproductive range is limited, so that no individuals
generate an excessive number of offspring. Ranking introduces a uniform scaling across the

population and provides a simple and effective way of controlling selective pressure.

5.5.1.2 Roulette wheel selection

The simplest selection scheme is roulette-wheel selection, also called stochastic sampling with
replacement. The individuals are mapped to contiguous segments of a line, such that each
individual's segment is equal in size to its fitness. A random number is generated and the
individual whose segment spans the random number is selected. The process is repeated until the
desired number of individuals is obtained (called mating population). This technique is analogous
to a roulette wheel with each slice proportional in size to the fitness, see figure 2.

Table 1 shows the selection probability for 11 individuals. Individual 1 is the most fit individual
and occupies the largest interval, Individual 11, the least fit interval, has a fitness value of 0 and
get no chance for reproduction.

Table 1 Selection probability and fitness value

Number of individual 1 2 3 4 5 6 7 8 9 10 | 11
fitness value 20 |18 16 |14 |12 |10 |08 |06 |04 02 0.0
selection probability 0.18 |0.16 |0.15 [0.13 |0.11 |0.09 |0.07 |0.06 |0.03 |0.02 | 0.0

For selecting the mating population the appropriate humber of uniformly distributed random
numbers (uniform distributed between 0.0 and 1.0) is independently generated.
Sample of 6 random numbers:
0.81,0.32, 0.96, 0.01, 0.65, 0.42
Figure 2 shows the selection process of the individuals for the example in table 1 together with
the above sample trials.

Figure 2 Roulette-wheel selection

trial 4 trial 2 trial 6 trial 5 trial 1 trial 3
individualll 1 L2 l, 3l [ 4 |l5 , ﬁl ?,8,19“10

| | | | | | | | L

0.0 018 0.34 04% 062 073 082 095 10
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After selection the mating population consists of the individuals: 1, 2, 3, 5,6, 9
The roulette-wheel selection algorithm provides a zero bias but does not guarantee minimum

spread.

5.5.1.3 Stochastic universal sampling

Stochastic universal sampling provides zero bias and minimum spread. The individuals are
mapped to contiguous segments of a line, such that each individual's segment is equal in size to
its fitness exactly as in roulette-wheel selection. Here equally spaced pointers are placed over the
line as many as there are individuals to be selected. Consider NPointer the number of individuals
to be selected, then the distance between the pointers are 1/NPointer and the position of the first
pointer is given by a randomly generated number in the range [0, 1/NPointer].

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167.

Figure 3 Stochastic universal sampling

pointer 1 pointer 2 pointer 3 pointer 4 pointer 5 pointer 6
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| | | | | | I | |
0.0 013 0.34 0.49 0.62 0.73 052 0.85 1.0

random number

After selection the mating population consists of the individuals: 1, 2, 3, 4, 6, 8.
Stochastic universal sampling ensures a selection of offspring which is closer to what is

deserved then roulette wheel selection.

5.5.1.4 Truncation selection

Compared to the previous selection methods modeling natural selection truncation selection is
an artificial selection method. It is used by breeders for large populations/mass selection.

In truncation selection individuals are sorted according to their fitness. Only the best individuals
are selected for parents. These selected parents produce uniform at random offspring. The
parameter for truncation selection is the truncation threshold Trunc. Trunc indicates the proportion
of the population to be selected as parents and takes values ranging from 50%-10%. Individuals

below the truncation threshold do not produce offspring.
5.5.1.5 Tournament selection

In tournament selection a number Tour of individuals is chosen randomly from the population
and the best individual from this group is selected as parent. This process is repeated as often as

individuals to choose. These selected parents produce uniform at random offspring. The

parameter for tournament selection is the tournament size Tour. Tour takes values ranging from 2 -
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Nind (number of individuals in population).

55.2 Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a
new chromosome (offspring). The idea behind crossover is that the new chromosome may be
better than both of the parents if it takes the best characteristics from each of the parents.

Crossover occurs during evolution according to a user-definable crossover probability.

5.5.2.1 Real valued recombination

Discrete recombination

Discrete recombination performs an exchange of variable values between the individuals.
Consider the following two individuals with 3 variables each (3 dimensions), which will also be
used to illustrate the other types of recombination:

Individual 1 12 25 5
Individual 2 123 4 34

For each variable the parent who contributes its variable to the offspring is chosen randomly
with equal probability.

Sample 1 2 2 1
Sample 2 1 2 1

After recombination the new individuals are created:

Offspring 1 123 4 5
Offspring 2 12 4 5

Discrete recombination generates corners of the hypercube defined by the parents. Discrete

recombination can be used with any kind of variables (binary, real or symbols).

Intermediate recombination

Intermediate recombination is a method only applicable to real variables (and not binary
variables). Here the variable values of the offspring are chosen somewhere around and between
the variable values of the parents.

Offspring are produced according to the rule:

Offspring = parent 1 + Alpha (parent 2 - parent 1)
where Alpha is a scaling factor chosen uniformly at random over an interval [-d, 1 + d]. In
intermediate recombination d = 0, for extended intermediate recombination d > 0. A good choice is
d = 0.25. Each variable in the offspring is the result of combining the variables according to the
above expression with a new Alpha chosen for each variable.

Consider the following two individuals with 3 variables each:
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Individual 1 12 25 5
Individual 2 123 4 34
The chosen Alphas for this example are:
Sample 1 0.5 1.1 -041
Sample 2 0.1 0.8 0.5
The new individuals are calculated as:
Offspring 1 67.5 1.9 2.1
Offspring 2 23.1 8.2 195
Intermediate recombination is capable of producing any point within a hypercube slightly larger
than that defined by the parents.
Line recombination
Line recombination is similar to intermediate recombination, except that only one value of Alpha
for all variables is used:
Individual 1 12 25 5
Individual 2 123 4 34
The chosen Alphas for this example are:
Sample 1 0.5
Sample 2 0.1
The new individuals are calculated as:
Offspring 1 675 145 195
Offspring 2 231 229 7.9

Line recombination can generate any point on the line defined by the parents.

5.5.2.2 Binary valued recombination (crossover)

Single-point crossover
In single-point crossover one crossover position k [1,2,...,Nvar-1], Nvar. number of variables of
an individual, is selected uniformly at random and the variables exchanged between the
individuals about this point, then two new offspring are produced. Figure 6 may illustrate this
process.
Consider the following two individuals with 11 binary variables each:
Individual 1 01110011010
Individual 2 10101100101
The chosen crossover position is:
Crossover position: 5

After crossover the new individuals are created:



Manual for ClusterProject 1.0

offspring 1 01110100101
offspring 2 101010 11 010

Figure 4 Single-point crossover

parents offspring

Multi-point crossover
For multi-point crossover, m crossover positions k; [1,2,...,Nyar1], i=1:m, Nvar. number of
variables of an individual, are chosen at random with no duplicates and sorted in ascending order.
Then, the variables between successive crossover points are exchanged between the two parents
to produce two new offspring. The section between the first variable and the first crossover point is
not exchanged between individuals. Figure 7 may illustrate this process.
Consider the following two individuals with 11 binary variables each:
Individual 1 01110011010
Individual 2 1010110010 1

The chosen crossover positions are:

Cross pos. (m=3) 2 6 10
After crossover the new individuals are created:

Offspring 1 0 11 0 1 10 1 1 11

Offspring 2 1011 0 00 0 1 00

Figure 5 Multi-point crossover

parents offspring
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The idea behind multi-point, and indeed many of the variations on the crossover operator, is that
parts of the chromosome representation that contribute to the most to the performance of a

particular individual may not necessarily be contained in adjacent substrings. Further, the
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disruptive nature of multi-point crossover appears to encourage the exploration of the search
space, rather than favoring the convergence to highly fit individuals early in the search, thus
making the search more robust.

Uniform crossover

Single and multi-point crossover defines cross points as places between loci where a individual
can be split. Uniform crossover generalizes this scheme to make every locus a potential crossover
point. A crossover mask, the same length as the individual structure is created at random and the
parity of the bits in the mask indicates which parent will supply the offspring with which bits.

Consider the following two individuals with 11 binary variables each:

Individual 1 01110011010
Individual 2 1010110010 1

For each variable the parent who contributes its variable to the offspring is chosen randomly
with equal probability. Here, the offspring 1 is produced by taking the bit from parent 1 if the
corresponding mask bit is 1 or the bit from parent 2 if the corresponding mask bit is 0. Offspring 2

is created using the inverse of the mask, usually.

Sample 1 01100011010

Sample 2 1001110010 1
After crossover the new individuals are created:

Offspring 1 11101111111

Offspring 2 001100O0O0O0OO0OTPO

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated
with the length of the binary representation used and the particular coding for a given parameter
set. This helps to overcome the bias in single-point crossover towards short substrings without
requiring precise understanding of the significance of the individual bits in the individual
representation. The algorithm of uniform crossover is identical to discrete recombination.

8.2.2.4 Shuffle crossover

Shuffle crossover is related to uniform crossover. A single crossover position (as in single-point
crossover) is selected. But before the variables are exchanged, they are randomly shuffled in both
parents. After recombination, the variables in the offspring are unshuffled. This removes positional
bias as the variables are randomly reassigned each time crossover is performed.

The binary valued crossover methods are all applicable to the real variables.

5.5.3 Mutation

Mutation is a genetic operator that alters one ore more gene values in a chromosome from its

initial state. This can result in entirely new gene values being added to the gene pool. With these
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new gene values, the genetic algorithm may be able to arrive at better solution than was
previously possible. Mutation is an important part of the genetic search as help helps to prevent
the population from stagnating at any local optima. Mutation occurs during evolution according to a
user-definable mutation probability. This probability should usually be set fairly low (0.01 is a good

first choice). If it is set to high, the search will turn into a primitive random search

5.5.3.1 Flip bit mutation

A mutation operator simply inverts the value of the chosen gene (0 goes to 1 and 1 goes to 0).

This mutation operator can only be used for binary.

5.5.3.2 Boundary mutation

A mutation operator replaces the value of the chosen gene with either the upper or lower bound
for that gene (chosen randomly). This mutation operator can only be used for integer and float

genes.

5.5.3.3 Uniform mutation

A mutation operator replaces the value of the chosen gene with a uniform random value
selected between the user-specified upper and lower bounds for that gene. This mutation operator

can only be used for integer and float genes.

5.5.3.4 Gaussian mutation

A mutation operator replaces the value of the chosen gene with a uniform random value
selected between the user-specified upper and lower bounds for that gene. This mutation operator

can only be used for integer and float genes.

5.5.4 Reinsertion

Once the offspring have been produced by selection, recombination and mutation of individuals
from the old population, the fitness of the offspring may be determined. If less offspring are
produced than the size of the original population then to maintain the size of the original population,
the offspring have to be reinserted into the old population. Similarly, if not all offspring are to be
used at each generation or if more offspring are generated than the size of the old population then
a reinsertion scheme must be used to determine which individuals are to exist in the new
population.

Different schemes of global reinsertion exist:

« Produce as many offspring as parents and replace all parents by the offspring (pure
reinsertion).

+ Produce less offspring than parents and replace parents uniformly at random (uniform
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reinsertion).

Produce less offspring than parents and replace the worst parents (elitist reinsertion).
Produce more offspring than needed for reinsertion and reinsert only the best offspring
(fitness-based reinsertion).

Pure Reinsertion is the simplest reinsertion scheme. Every individual lives one generation only.
This scheme is used in the simple genetic algorithm. However, it is very likely, that very good
individuals are replaced without producing better offspring and thus, good information is lost.

The elitist combined with fithess-based reinsertion prevents this losing of information and is the
recommended method. At each generation, a given number of the least fit parents is replaced by
the same number of the most fit offspring (see figure 6). The fitness-based reinsertion scheme
implements a truncation selection between offspring before inserting them into the population (i.e.
before they can participate in the reproduction process). On the other hand the best individuals
can live many generations. However, every generation some new individuals are inserted. It is not
checked whether the parents are replaced by better or worse offspring.

Figure 6 Scheme for elitist insertion
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Because parents may be replaced by offspring with a lower fitness, the average fitness of the

population can decrease. However, if the inserted offspring are extremely bad, they will be

replaced with new offspring in the next generation.

5.5.5 Termination

Termination is the criterion by which the genetic algorithm decides whether to continue
searching or stop the search. Each of the enabled termination criterion is checked after each
generation to see if it is time to stop.

The following types of termination should be considered:

< Generation Number: A termination method that stops the evolution when the

user-specified maximum number of evolutions has been run. This termination method is
always active.

<~ Evolution Time: A termination method that stops the evolution when the elapsed evolution
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time exceeds the user-specified max evolution time. By default, the evolution is not stopped
until the evolution of the current generation has completed, but this behavior can be
changed so that the evolution can be stopped within a generation.

<~ Fitness Threshold: A termination method that stops the evolution when the best fitness in
the current population becomes less than the user-specified fitness threshold and the
objective is set to minimize the fitness. This termination method also stops the evolution
when the best fithess in the current population becomes greater than the user-specified
fitness threshold when the objective is to maximize the fitness.

<~ Fitness Convergence: A termination method that stops the evolution when the fitness is
deemed as converged. Two filters of different lengths are used to smooth the best fithess
across the generations. When the smoothed best fitness from the long filter is less than a
user-specified percentage away from the smoothed best fithess from the short filter, the
fitness is deemed as converged and the evolution terminates.

<~ Population Convergence: A termination method that stops the evolution when the
population is deemed as converged. The population is deemed as converged when the
average fitness across the current population is less than a user-specified percentage away
from the best fitness of the current population.

<~ Gene Convergence: A termination method that stops the evolution when a user-specified
percentage of the genes that make up a chromosome are deemed as converged. A gene is
deemed as converged when the average value of that gene across all of the chromosomes
in the current population is less than a user-specified percentage away from the maximum

gene value across the chromosomes.
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